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1 Introduction

One class of backgrounds which are commonly considered in string theory are of the form

M1,d−1 × Y10−d , (1.1)

where M1,d−1 is a d-dimensional Minkowskian space-time while Y10−d is a compact manifold

of dimension (10−d). In such backgrounds the Lorentz group decomposes accordingly into

SO(1, d − 1) × SO(10 − d). The requirement that the background preserves some amount

of supersymmetry generically demands that Y10−d admits globally defined and nowhere

vanishing spinors. This reduces the structure group G from SO(10− d) to some subgroup

G ⊂ SO(10 − d).1 Such manifolds are termed manifolds with G-structure in the literature

and they are natural generalizations of Calabi-Yau manifolds [2]–[7].

More precisely, Calabi-Yau manifolds form a subclass of manifolds with G-structure

in that the globally defined spinors are also covariantly constant with respect to the Levi-

Civita connection. As a consequence the Ricci-tensor vanishes and G = SU(n) coincides

with the holonomy group. However, in the presence of fluxes and localized energy sources

such as D-branes and/or orientifold planes the geometry back-reacts and is no longer nec-

essarily Calabi-Yau [8].

In type II theories a slightly more general set-up is possible. The left and the right

sector can preserve different “structure groups” and backgrounds with G×G structure can

be considered [9]–[13]. This situation is best described by a formalism — termed generalized

geometry — that describes the metric and the B-field of string theory as components of

the generalized metric of some bundle E that locally looks like the direct sum of the

tangent and the cotangent bundle. On this bundle, the T-duality group SO(10− d, 10− d)

acts naturally, and thus one has an SO(10 − d, 10 − d) covariant formulation of string

backgrounds. Within this formalism the notion of classical geometry can be relaxed in that

Y10−d does not have to be a manifold. Instead objects such as T-folds and generalizations

thereof can be considered [14]–[17].2

Recently the Ramond-Ramond (RR) sector has also been included in this framework

by embedding the T-duality group into the U-duality group E11−d(11−d) [18–21]. The

resulting geometrical structure has been termed ‘exceptional generalized geometry’ as one

has to replace the generalized tangent bundle by some exceptional tangent bundle which

admits a natural action of E11−d(11−d). The metric of this bundle inherits all scalar degrees

of freedom of the low-energy type II theory, including the ones coming from the RR sector.

So far, in type II theories mainly SU(3)× SU(3) backgrounds generalizing Calabi-Yau

threefold compactifications have been discussed in the literature. The reason is that they

preserve only eight supercharges and therefore are a convenient starting point for particle

1Exceptions of this situation are, for example, in ref. [1]. However, in this paper we do not consider such

cases. We thank the referee of our paper for drawing our attention to this possibility.
2Throughout this paper we do not specify if Y10−d is an honest manifold or some of the generalizations.

For example, we discuss backgrounds where only the tangent space admits a splitting of the form TM1,9 =

T1,d−1 ⊕F10−d. Nevertheless we always call Y the compactification manifold and the analysis in this paper

just carries over to this more general case.
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phenomenology. However, backgrounds with more supersymmetry have also been of consid-

erable interest due to their constraint low energy couplings. In addition, by appropriately

orientifolding such backgrounds, one can also construct theories with less supersymmetry.

In this paper we focus on type II backgrounds with 16 supercharges (corresponding

to N = 4 in d = 4) which we discuss in the Minkowskian dimensions d = 6, 5, 4. These

backgrounds feature the manifolds Y4,5,6 which have SU(2) × SU(2) structure and which

are generalizations of K3,K3 × S1 and K3 × T 2 respectively. Aspects of such manifolds

were previously discussed for example in refs. [7, 12, 22–24], while N = 4 compactifications

with background fluxes have been analyzed for instance in refs. [25].

One of our main interests in this paper is the relation with N = 4 supergravity, which

constrains the low energy couplings. For example, the scalar fields of type IIA have to

parameterize cosets of the form [26]

M =
SO(10 − d, nV )

SO(10− d)× SO(nV )
× R

+ , (1.2)

where nV counts the number of vector multiplets and the R
+ factor corresponds to the

dilaton.3 In this paper we identify M as the deformation space of certain SU(2) × SU(2)

structure manifolds. For a special class of SU(2) structure backgrounds in d = 4 this was

already discussed in [23]. Here we analyze the generic situation and concentrate on the

scalar field space which corresponds to the kinetic terms of the scalars in the low energy

effective Lagrangian. A more detailed derivation of this Lagrangian including the possible

gaugings and the potentials will be presented elsewhere [27]. We choose a possible warp

factor in (1.1) to be constant although most of our analysis carries over to the case of a

non-trivial warp factor.

In order to analyze manifolds with SU(2) × SU(2) structure we use the pure spinor

formalism within the framework of generalized geometries [2]. We find that generic SU(2)×
SU(2) structures do not exist but instead only manifolds with a single SU(2) structure

or with an identity structure can occur. The latter correspond to backgrounds with 32

supercharges, which we do not study any further in this paper. Instead we focus on

backgrounds with an honest SU(2) structure and thus 16 supercharges.

On the class of SU(2) structure manifolds we impose the additional constraint that

at low energies no massive gravitino multiplets survive as their presence would alter the

scalar geometry (1.2). Analogously to the analysis of SU(3)×SU(3) structures in refs. [13]

this constraint amounts to projecting out all SU(2) doublets. In this case we find that the

deformations of the SU(2) structure span the Neveu-Schwarz (NS) subspace of the manifold

M given in (1.2).4

The metric on the scalar field space or in other words the kinetic term of the effective

action is largely determined by algebraic properties of the pure spinors. In addition dif-

ferential constraints can be imposed. They appear in the scalar potential and determine

3In d = 4 the R
+ factor is enlarged to the coset Sl(2, R)/SO(2) since the antisymmetric tensor of the

NS-sector is dual to an axion and contributes in the scalar couplings.
4This NS subspace also appears in corresponding compactifications of the heterotic string on manifolds

with SU(2)-structure [28].

– 3 –



J
H
E
P
0
7
(
2
0
0
9
)
0
8
0

possible consistent backgrounds of the theory. However, they also affect the metric in that

they select a certain subclass of manifolds with SU(2) structure. For example, we will see

that projecting out the doublets can fix a certain component of Y to be related to K3.

The RR-sector can be included by using the formalism of exceptional generalized ge-

ometry [18–21]. The SO(10−d, 10−d) pure spinors are appropriately embedded into repre-

sentations of the U-duality group E11−d(11−d), with new degrees of freedom corresponding

to the RR-scalars. Due to the RR-sector, type IIA differs from type IIB and we analyze

both cases separately. In each case we find agreement with the supergravity results.5

The paper is organized as follows. In section 2 we analyze four-dimensional manifolds

Y4 with SU(2)× SU(2) structure. Before we discuss geometrical and topological issues, we

recall in section 2.1 the supergravity field content for type II theories in ten dimensions in

an N = 4 language. There we see that for N = 4 compactifications to be consistent, we

have to project out all SU(2)×SU(2) doublets, which contain the extra gravitino multiplets

that are massive in the compactifications. Then we turn to the geometrical description of

SU(2) × SU(2) structures. As a warm-up we start the discussion with (geometric) SU(2)

structures in section 2.2. In section 2.3 we then use the pure spinor formalism to describe

generic SU(2) × SU(2) structure backgrounds. With this, we are able to determine the

moduli space in section 2.4. In section 2.5 we include the RR-sector by embedding the

SO(4, 4) pure spinors into an E5(5) ≡ SO(5, 5) covariant formulation. This enables us to

compute the complete moduli space for type IIA and IIB strings and show the consistency

with supergravity.

The more involved case of compactifications to d = 4 is discussed in section 3. As

in section 2, we start with an analysis of the spectrum in section 3.1, before we turn to

a discussion of SU(2) × SU(2) structures in geometrical terms. After introducing SU(2)

structures in section 3.2, we use the pure spinor formalism in section 3.3 to describe the

more general case of SU(2) × SU(2) structures for six-dimensional manifolds Y6. We find

that it is convenient to introduce a generalized almost product structure which reduces the

structure group from SU(3) × SU(3) to SU(2) × SU(2). We show in section 3.4 that this

generalized almost product structure cannot vary and that the moduli space essentially

reduces to the one of section 2.4. In section 3.5 we embed the pure spinors in an E7(7)

covariant formalism, which we use in section 3.6 to show that the moduli space of type II

theories is given by (1.2).

Section 4 contains our conclusions and some of the more technical computations are

assembled in 5 appendices. In appendix A we briefly state our conventions and give ex-

plicitly the Fierz identities that are used in section 2.2 and 3.2. Appendix B discusses

the different cones over the moduli space which appear in the associated superconformal

supergravities. Specifically, appendix B.1 is devoted to the hyperkähler cone (or the Swann

bundle) [30, 31] which exists over the NS moduli space since it can be viewed as the scalar

field space of a theory with eight supercharges. In particular we discuss the relationship of

the purity and compatibility conditions with an SU(2) quotient of flat space and express

5Note that there is an intriguing relation between the supergravity moduli spaces and the horizon

geometry of extremal black hole attractors [29].
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the hyperkähler potential in terms of geometric quantities. In appendix B.2 we discuss the

flat cones which arise in the superconformal supergravity of theories with 16 supercharges.

In appendix C we give the proof that the generalized almost product structure which we

introduced in section 3.3 to define SU(2)× SU(2) structures on backgrounds of dimension

six is rigid for N = 4 compactifications. In appendix D we give the details on the cal-

culations in the E7(7) covariant formalism used in section 3.5 and section 3.6. Finally, in

appendix E we work out the case of compactifications on SU(2)×SU(2) structures in d = 5,

using the strategy of section 2 and section 3. In appendix E.1 we discuss the spectrum of

N = 2 supergravities in five dimensions achieved by compactification of type II theories on

backgrounds of SU(2) × SU(2) structure. In appendix E.2, we introduce SU(2) structures

in five dimensions, and generalize to SU(2) × SU(2) structures by use of the pure spinor

formalism in appendix E.3. There we also derive the NS moduli space. In appendix E.4 we

use again the concept of exceptional generalized geometry to include the RR-sector and to

compute the complete moduli space. Appendix E has some overlap with the independent

work of ref. [20].

2 Compactifications on manifolds with SU(2)×SU(2) structure in d = 6

In this section we study backgrounds of the form (1.1) with a six-dimensional Minkowskian

space-time M1,5 times a four-dimensional manifold Y4. We focus on the situation where

these backgrounds preserve N = 2 in d = 6. Since the spinor representation is eight-

dimensional in d = 6 this corresponds to 16 supercharges or N = 4 supersymmetry in

terms of a four-dimensional counting.

More precisely the Lorentz group for these backgrounds is SO(1, 5) × SO(4). The

ten-dimensional spinor representation decomposes accordingly as

16→ (4,2) ⊕ (4̄, 2̄) , (2.1)

where the 4 is a Weyl spinor of SO(1, 5) while the 2 denotes the spinor representation

of SO(4).

Preserving half of the supercharges amounts to choosing backgrounds that admit one

or two globally defined spinors, which corresponds to manifolds Y4 with a reduced structure

group SU(2) or SU(2) × SU(2), respectively.6 Let us now discuss both cases in turn. We

will start with a general analysis of the spectrum of type II supergravities in such back-

grounds, and then introduce a proper geometrical description that allows us to determine

the structure of the moduli space explicitly.

2.1 Field decompositions and spectrum

In this section we give the massless type II supergravity fields in terms of their represen-

tations under the six-dimensional Lorentz group and the structure group and analyze how

they assemble in N = 2 multiplets, in the spirit of [13].

6In the following, whenever we refer to an object as being globally defined we mean globally defined and

nowhere vanishing.
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Because we deal with massless particles, we can use the light-cone gauge where we only

have to consider representations of SO(4)lc instead of the whole SO(1, 5) Lorentz group.

Since we treat the case of an SU(2)×SU(2) structure group, we examine the decomposition

of massless type II fields under the group SO(4)lc × SU(2) × SU(2). For this, let us recall

the decomposition of the two Majorana-Weyl representations 8s and 8c and the vector

representation 8v under the breaking

SO(8)→ SO(4)lc × SO(4)→ SO(4)lc × SU(2) . (2.2)

We get

8s → 22 ⊕ 2̄2̄ → 22 ⊕ 212̄ ,

8c → 22̄ ⊕ 2̄2 → 22̄ ⊕ 212 ,

8v → 14 ⊕ 41 → 14 ⊕ 221 ,

(2.3)

where the subscript denotes the representation under the group SO(4)lc.

In type IIA string theory the massless fermionic degrees of freedom originate from

the (8s,8v) and (8v ,8c) representation of SO(8)L × SO(8)R, while in type IIB they origi-

nate from the (8s,8v) and (8v ,8s) representation. Respectively, under the decomposition

SO(8)L × SO(8)R → SO(4)lc × SU(2)L × SU(2)R we find

(8s,8v)→ 2(1,1)6 ⊕ 2(1,1)2 ⊕ (1,2)6̄ ⊕ (1,2)2̄ ⊕ 4(2,1)2̄ ⊕ 2(2,2)2 ,

(8v,8s)→ 2(1,1)6 ⊕ 2(1,1)2 ⊕ 4(1,2)2̄ ⊕ (2,1)6̄ ⊕ (2,1)2̄ ⊕ 2(2,2)2 ,

(8v,8c)→ 2(1,1)6̄ ⊕ 2(1,1)2̄ ⊕ 4(1,2)2 ⊕ (2,1)6 ⊕ (2,1)2 ⊕ 2(2,2)2̄ .

(2.4)

We see that half of the gravitinos, denoted by the subscript 6 and 6̄, come in the (1,1)

representation while the other half is in the doublet representations (1,2) and (2,1) of

SU(2)L×SU(2)R. We will see below that the 6d graviton is in the (1,1) representation and

thus this representation refers to the gravity multiplet in six dimensions. Hence the (1,2)

and (2,1) representations correspond to additional gravitino multiplets, which acquire a

mass at the Kaluza-Klein scale due to the SU(2) × SU(2) structure background. We have

to project out these representations to end up with a standard N = 2 supergravity in six

dimensions [32]. This is analogous to projecting out all SU(3) × SU(3) triplets in [13] to

achieve a standard N = 2 theory in four dimensions. After this projection, the fermionic

components in the (1,1) representation become part of the gravity multiplet, while the

(2,2) components correspond to the fermionic degrees of freedom in the N = 2 vector and

tensor multiplets in type IIA and IIB, respectively.7

The massless bosonic fields of type II supergravity can be decomposed analogously.

For the NS-NS-sector, it is convenient to consider the combination

EMN = gMN + BMN + φηMN , (2.5)

7In type IIB, only the anti-self-dual part of the antisymmetric two-tensor is part of the gravity multi-

plet [33]. The self-dual component forms a tensor multiplet together with scalars in the RR-sector. This

tensor multiplet is also in the (1,1) representation.

– 6 –
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which decomposes as

Eµν : (1,1)9 ⊕ (1,1)1 ⊕ (1,1)3⊕3̄ ,

Eµm : 2(1,2)4 ,

Emµ : 2(2,1)4 ,

Emn : 4(2,2)1 .

(2.6)

Projecting out the doublets eliminates the six-dimensional vectors Eµm and Emµ, and we

are left with Eµν , i.e. the metric, the six-dimensional dilaton and the antisymmetric two-

tensor, which are part of the gravity multiplet, and the scalars Emn, which reside in vector

or tensor multiplets. Since the latter ones correspond to the internal metric and B-field

components, they can be associated with deformations of the SU(2)× SU(2) background.

Finally, in the RR-sector we need to decompose the (8s,8c) representation in type IIA

and the (8s,8s) in type IIB. One finds

(8s,8c)→ 4(1,1)4 ⊕ 2(1,2)3̄ ⊕ 2(1,2)1 ⊕ 2(2,1)3 ⊕ 2(2,1)1 ⊕ (2,2)4 ,

(8s,8s)→ 4(1,1)3̄ ⊕ 4(1,1)1 ⊕ 2(1,2)4 ⊕ 2(2,1)4 ⊕ (2,2)3 ⊕ (2,2)1 .
(2.7)

We see that in type IIA only six-dimensional vectors in the RR-sector survive the projection.

Those which are in the (1,1) representation form the graviphotons in the gravity multiplet,

those in the (2,2) give the vectors in the vector multiplets.

Projecting out all SU(2) × SU(2) doublets leaves a spectrum that for type IIA com-

bines into a gravitational multiplets plus a vector multiplet of the non-chiral d = 6, N = 2

supergravity. For type IIB we obtain instead a gravitational multiplets and two tensor mul-

tiplet of the chiral N = 2 supergravity. To be more precise, in type IIA the gravitational

multiplet contains the graviton, an antisymmetric tensor, two (non-chiral) gravitini, four

vector fields, four Weyl fermions and a real scalar. These degrees of freedom precisely cor-

respond to the (1,1) representation of the decompositions given in (2.4), (2.6) and (2.7).

The vector multiplet contains a vector field, four gaugini and four real scalars. These

arise in the (2,2) representation of the above decompositions. In type IIB the gravita-

tional multiplet contains the graviton, five self-dual antisymmetric tensor and two (chiral)

gravitini. These degree of freedom are found in the (1,1) representation of the above de-

compositions. In addition there are two tensor multiplets each containing an anti-self-dual

antisymmetric tensor, two chiral fermions and five scalars. One of them also originates

from the (1,1) representation while the second one comes from the (2,2) representation

of the above decompositions.

Note that the resulting fields still depend on all coordinates of the ten-dimensional

spacetime, i.e. we have not performed any Kaluza-Klein truncation on the spectrum but

really deal with ten-dimensional backgrounds. This procedure just corresponds to a rewrit-

ing of the ten-dimensional supergravity in a form where instead of the ten-dimensional

Lorentz group only SO(1, 5) × SO(4) with sixteen supercharges is manifest. This “rewrit-

ing” of the ten-dimensional theory has been pioneered in ref. [34] and applied to the case

of SU(3)× SU(3) structures in refs. [13, 35].

– 7 –
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2.2 General remarks on SU(2) structures

In this section we review some general facts about the geometry of SU(2) structures on

four-dimensional manifolds Y4. A prominent example of such manifolds is K3 which even

has SU(2) holonomy (for review, see e.g. [36]).

The requirement of unbroken supercharges demands that the internal manifold admits

a globally defined, nowhere vanishing spinor η. Four-dimensional manifolds with this prop-

erty have a structure group G that is contained in SU(2) and are called manifolds of SU(2)

structure. This is due to the fact that η defines an element of the SO(4) spinor bundle

which is a singlet of the structure group G ⊂ SO(4). Since the spin bundle of SO(4) is

SU(2)×SU(2), the choice of the spinor η is equivalent to the choice of a particular unbroken

SU(2) subgroup of SO(4), which is identified with the structure group G = SU(2).

Let us now consider the decomposition of the spinor representations under G. The

defining spinor η and its charge conjugate ηc are both globally defined and nowhere van-

ishing and therefore they are both singlets under the structure group G. Moreover, they

are linearly independent and have the same chirality.8 Together they span the space of

Weyl spinors of given chirality, which thus is decomposed into two SU(2) singlets. The

Weyl spinor representation of opposite chirality forms a doublet under the SU(2) structure

group. It is just a matter of convention which representation we denote by 2 and which

one by 2̄. Here and in the following we choose

2→ 2 , 2̄→ 1⊕ 1 (2.8)

for the breaking SO(4)→ SU(2).

From the two singlets one can construct three distinct globally defined two-forms by

appropriately contracting with SO(4) γ-matrices [7]

η̄γmnη = − iJmn , η̄cγmnη = iΩmn , η̄γmnηc = i Ω̄mn , m, n = 1, . . . , 4 , (2.9)

where the normalization η̄η = 1 is chosen. However, these two-forms are not independent

but satisfy

Ω ∧ Ω̄ = 2J ∧ J 6= 0 , Ω ∧ J = 0 , Ω ∧Ω = 0 , (2.10)

which follows from the Fierz identities given in (A.3). Conversely, the Fierz identities

also show that the choice of a real two-form J and a complex two-form Ω determines η

completely (up to normalization) if they satisfy the above relations. Therefore, J and Ω

equivalently define an SU(2) structure on the manifold.

Alternatively one can also define an SU(2)-structure in terms of stable forms [3]. A

stable p-form ω ∈ ΛpV ∗ on a vector space V is defined as a form whose orbit under the

action of Gl(V ) is open in ΛpV ∗. For a stable two-form ω on a 2m-dimensional space

this means that ωm 6= 0. Thus, a stable two-form on an even-dimensional space defines a

symplectic structure on it.

On a four-dimensional manifold Y4 the stable two-form J satisfies J ∧ J ∼ vol4
and locally defines a symplectic structure that reduces the structure group from Gl(4)

8Note that η and ηc have the same chirality in four Euclidean dimensions (see appendix A). The

transposed spinors, i.e. ηt and η̄ = (ηc)t are also globally defined and are the singlets of the dual space.

– 8 –
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to Sp(4, R).9 The existence of additional stable forms can reduce the structure group even

further. In this case one has to ensure that these stable forms do not reduce the struc-

ture group in the same way. For example, one can take two linearly independent stable

two-forms Ji, i = 1, 2 that satisfy

Ji ∧ Jj = δij vol4 . (2.11)

J1 and J2 then define a holomorphic two-form Ω = J1 + i J2, which globally defines a

holomorphic subbundle in the tangent space and therefore breaks the structure group to

Sl(2, C) ≡ Sp(2, C).

Analogously, in the case of three stable two-forms Ji, i = 1, 2, 3, which satisfy (2.11)

the structure group is reduced even further. Since J3 is orthogonal to Ω = J1 + iJ2 and its

complex conjugate, it defines a product between the holomorphic and the anti-holomorphic

tangent bundle. Therefore, the Sl(2, C) is further broken to the SU(2) subgroup which

preserves this product.10 If one defines

J = J3 , Ω = J1 + i J2 , (2.12)

it is straightforward to check that (2.11) and (2.10) are indeed equivalent.

In terms of stable forms it is easy to identify the parameter space of SU(2) structures.

A triple of stable forms Ji has to fulfill (2.11) in order to define an SU(2) structure on

Y4. Thus the Ji span a three-dimensional subspace in the space of two-forms. By choosing

some volume form vol4, i.e. some orientation on Y4, we can interpret the wedge product

as a scalar product of split signature on the space of two-forms. With respect to this

scalar product, the Ji form an orthonormal basis for a space-like subspace. The SO(3, 3)

orbit of such a triple of Ji gives all possible configurations that respect (2.11). Thus, the

configuration space can be written as SO(3, 3) divided by the stabilizer of the Ji. The

stabilizer consists of SO(3) rotations in the subspace orthogonal to the Ji, which leave the

SU(2) structure invariant. Therefore, the configuration space for the Ji is SO(3, 3)/SO(3).

The SO(3) rotations in the stabilizer correspond to the action of the SU(2) structure group

on the space of two-forms. The Ji are singlets under the SU(2) structure group while the

space orthogonal to them forms an SU(2) triplet.

One should note that there is some redundancy in the descriptions of SU(2) structures

on a manifold. Any rescaling of the Ji does not change the unbroken SU(2) and therefore

does not correspond to a degree of freedom for the SU(2) structure. Hence we can fix

the normalization by (2.11). Furthermore, there is a rotational SO(3) symmetry between

the three forms Ji. However, this symmetry is not obvious from the definition (2.9). It

corresponds to SU(2) rotations on the Weyl-spinor doublet (η, ηc) which is a symmetry

because η and ηc have the same chirality on a four-dimensional manifold. One can check

that the three two-forms Ji indeed form a triplet under the action of this SU(2). By

modding out this symmetry, we arrive at the parameter space of an SU(2) structure over

9Note that this symplectic structure may be non-integrable in the sense that dω 6= 0. Therefore, our

notion of a symplectic structure differs from the usual mathematical terminology.
10Of course, this breaking is just the well-known relation Sl(n, C) ∩ Sp(2n, R) = SU(n).
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a point on the manifold Y4, which is

MJi
=

SO(3, 3)

SO(3)× SO(3)
. (2.13)

By consideration of the corresponding spin groups of SO(3, 3) and SO(3) one expresses

this result as

MJi
=

Sl(4, R)

SO(4)
. (2.14)

If one compares this with the parameter space Gl(4, R)/SO(4) of the metric over a point

of Y4, we see that the parameter space of SU(2) structures incorporates all metric degrees

of freedom except the volume factor. The missing degree of freedom corresponding to the

volume factor can be associated with the normalization of the Ji in (2.11).11

At the end of section 2.4 we derive the global moduli space of an SU(2) structure over

Y4 from (2.13). However, before we do so, we first generalize our local discussion to general

SU(2) × SU(2) structures.

2.3 SU(2) × SU(2) structures and pure spinors

One can generalize the SU(2) structures discussed in the previous section by assuming that

the manifold admits two globally defined, nowhere vanishing spinors η1 and η2. Each of

them defines an SU(2) structure on its own and if they are identical everywhere on the

manifold, this reduces to the case discussed in the previous section. In the other limiting

case where η1 and η2 are orthogonal at each point, the two SU(2) structures intersect in

some identity structure, which means that the spinor bundle is trivial and compactification

on this backgrounds preserves all 32 supercharges (corresponding to N = 8 in d = 4).

However, in principle one can also have the intermediate case of two globally defined,

nowhere vanishing spinors η1 and η2 that are linearly independent at most points but

become parallel at some points on the manifold.

Analogously to the last section, there is an equivalent formulation of SU(2) × SU(2)

structures in terms of globally defined stable forms. This is elegantly captured by the

notion of pure spinors and generalized geometry [6, 9, 37]. Let us briefly review this

concept for a 2n-dimensional manifold Y and then return to the case of SU(2) × SU(2)

structures afterwards.

2.3.1 Generalized geometry and the pure spinor approach

In generalized geometry one considers a generalized tangent bundle T Y which locally looks

like TY ⊕T ∗Y and therefore admits a scalar product I of split signature that is induced by

the canonical pairing between tangent and cotangent space. On a 2n-dimensional manifold

Y this bundle thus has a structure group contained in SO(2n, 2n).

11Note that the choice of a triple of normalized Ji is just equivalent to the choice of a Hodge operator ∗

on the space of two-forms. This is reflected by the fact that the Ji just span the positive eigenspace of ∗ in

the space of two-forms.
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Similar to our discussion in the last section, one can introduce further objects that

break the structure group. For example, an almost complex structure J , fulfilling

J 2 = −1 , (2.15)

can be defined if (and only if) the complexified generalized tangent bundle globally splits as

(T Y )
C

= L+ ⊕ L− , (2.16)

where L± are the eigenspaces of J with the eigenvalues ± i. If J is globally defined on Y ,

the structure group of T Y is broken from SO(2n, 2n) to U(n,n).

When two generalized almost complex structures J1,2 exist, the notion of compatibility

can be defined. More precisely, J1 and J2 are called compatible if

1. J1 and J2 commute and

2. G := IJ1J2 is a positive definite metric on T Y , where I is the canonical scalar

product on T Y .

The first condition ensures that the splittings (2.16) can be done simultaneously, i.e. that

(T Y )
C

= L++ ⊕ L−+ ⊕ L+− ⊕ L−− , (2.17)

where the indices correspond to the eigenvalues of J1,2. The second condition ensures

that each of the four components in (2.17) is n-dimensional such that the two compatible

generalized almost complex structures reduce the structure group to U(n) × U(n), where

each U(n) acts on two of the four components.

Let us now briefly review how to reformulate generalized geometry in terms of pure

spinors Φ [6, 9]. One first defines the annihilator space LΦ of a complex SO(2n, 2n) Weyl

spinor Φ as the subspace of complexified gamma-matrices which map Φ to zero, i.e.

LΦ ≡ {Γ ∈ (T Y )
C
|ΓΦ = 0} . (2.18)

Note that LΦ is always isotropic as for each element Γ of LΦ we have

0 = Γ2Φ = I(Γ,Γ)Φ , (2.19)

which implies I(Γ,Γ) = 0 for all Γ ∈ LΦ.

A complex Weyl spinor Φ of SO(2n, 2n) is called pure if its annihilator space has

maximal dimension, i.e. dimLΦ = 2n. Φ is called normalizable if

〈Φ, Φ̄〉 > 0 , (2.20)

where the brackets denote the usual spinor product. As a consequence of Chevalley’s

theorem [38], which states

dim LΦ ∩ LΨ = 0 ⇔ 〈Φ,Ψ〉 6= 0 , (2.21)
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normalizable pure spinors define a splitting

(T Y )
C

= LΦ ⊕ LΦ̄ . (2.22)

By matching the annihilator space LΦ with the + i eigenspace of some generalized almost

complex structure, one can show that both are equivalent up to the normalization factor of

Φ. Thus, generalized almost complex structures are equivalent to lines of pure SO(2n, 2n)

spinors. A pure spinor therefore breaks the structure group of T Y further from U(n,n) to

SU(n, n) in that fixing its phase eliminates the U(1) factor.

The compatibility conditions for two generalized almost complex structures translate

into a compatibility condition on the corresponding pure spinors. Two normalizable pure

SO(2n, 2n) spinors Φ1,2 are compatible if and only if their annihilator spaces intersect in a

space of dimension n, i.e.

dim(LΦ1 ∩ LΦ2) = n . (2.23)

Thus the pair Φ1,2 breaks the structure group to SU(n)× SU(n) (instead of U(n)×U(n)).

Therefore, pure spinors of generalized geometry provide a convenient framework to deal

with SU(n)× SU(n) structures. Whenever T Y = TY ⊕ T ∗Y globally, both SU(n) factors

can be projected to the tangent space TY . In this case the intersection of these projections

defines the structure group of the tangent bundle.

The compatibility condition of two pure spinors also restricts their chirality. Since

SO(n, n) transformations do not mix chiralities, one can always assume Φ1 and Φ2 to be

of definite chirality. Furthermore, two pure spinors Φ1 and Φ2 have the same chirality if

and only if [39]

dim(LΦ1 ∩ LΦ2) = 2k (2.24)

for k ∈ N. Therefore, two compatible pure spinors are of the same chirality if n is even

and of opposite chirality for n being odd.

One can construct pure SO(2n, 2n) spinors out of the two globally defined SO(2n)

spinors η1 and η2 discussed at the beginning of this section. More precisely, one has

η1 ⊗ η̄2 =
1

4

2n
∑

k=0

1

k!
(η̄2γm1...mk

η1) γmk...m1 , (2.25)

where γm1...mk is the totally antisymmetric product of SO(2n) γ-matrices. One can act

with SO(2n) gamma-matrices from the left or from the right which in turn defines an

SO(2n, 2n) action on the bi-spinor η1 ⊗ η̄2. By extensive use of the Fierz identities given

in appendix A, one can show that η1 ⊗ η̄2 is pure and normalizable. The same holds for

η1 ⊗ η̄c
2 and these two pure spinors are moreover compatible. Thus they can be used to

discuss SU(n)× SU(n) structures.

The map

τ η1 ⊗ η̄2 7−→ τ(η1 ⊗ η̄2) ≡
1

4

2n
∑

k=0

1

k!
(η̄2γm1...mk

η1) emk ∧ · · · ∧ em1 , (2.26)

with emk being a local basis of one-forms, identifies SO(2n, 2n) spinors with formal sums

of differential forms. This isomorphism is canonical up to the choice of a volume form on
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the manifold [13]. Note that (2.26) maps negative (positive) chirality spinors to differential

forms of odd (even) degree. Moreover, it is an isometry with respect to the spinor product

and the so-called Mukai pairing. The latter is defined by12

〈Ψ, χ〉 =
∑

p

(−)[(p−1)/2]Ψp ∧ χ2n−p , (2.27)

which maps two formal sums of differential forms to a form of top degree. Like the

spinor product, it is symmetric for n even, and anti-symmetric for n being odd. Using

the definition

λαp = (−1)[(p−1)/2]αp (2.28)

for a p-form αp, we can write the Mukai pairing also in the form

〈Ψ, χ〉 = [Ψ ∧ λχ]deg=2n . (2.29)

In the following we frequently use the isomorphism (2.26).

Before we go on, let us state two important facts. One can show that a pure spinor Φ

is always of the form [9]

Φ = e−B ∧ e− iJ ∧Ω , (2.30)

where B and J are real two-forms and Ω is some complex k-form, k ≤ 2n, that is locally

decomposable into complex one-forms. Furthermore, one can prove that two compatible

pure spinors are always of the form [37]

Φ1 = e−B ∧ τ(η1 ⊗ η̄2) , Φ2 = e−B ∧ τ(η1 ⊗ η̄c
2) , (2.31)

where the isomorphism τ is defined in (2.26).

Before we close this section, let us define the generalized Hodge operator [11, 40]

∗B = e−B ∗ λ eB (2.32)

which acts on the space of forms, with λ defined by (2.28). Under the isomorphism given

in (2.26) the generalized Hodge operator is mapped to charge conjugation on the space

of SO(2n, 2n) spinors. Analogously to the conventional Hodge operator, the generalized

version can define a positive definite metric G(·, ·) ≡ 〈·, ∗B ·〉 on the space of forms, which

is just the composition of ∗B with the Mukai pairing. From (2.29) it is easy to see that G

acts on the space of forms by

G(e−B ∧Ψ, e−B ∧ χ) = 〈e−B ∧Ψ, ∗B e−B ∧ χ〉 = [Ψ ∧ ∗χ]deg=2n =
2n
∑

p=0

Ψp ∧ ∗χp , (2.33)

which indeed is positive definite. Therefore, the Mukai pairing and the generalized Hodge

operator have the same signature.

Since ∗2B = 1 on forms of even degree, we see that the generalized Hodge operator

corresponds to an almost product structure on ΛevenT ∗Y . For B = 0, it coincides on two-

forms with the conventional Hodge star operator, which is of split signature over each point.

12Here, [·] is the floor function which rounds down its argument to the next integer number.
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In this case, the forms 1±vol are eigenvectors of ∗B to the eigenvalue ∓1 and we see that ∗B
has split signature on ΛevenT ∗Y over each point of Y . Since B can be continously switched

on, the signature is independent of B, and the eigenspaces of ∗B (with eigenvalue ±1) at

a given point on the manifold have the same dimension. As the standard Hodge operator,

the generalized Hodge operator ∗B can be globally defined on Y and therefore must be

invariant under the SU(2) × SU(2) structure group. Hence, ∗B leaves the SU(2) × SU(2)

representations invariant, and its eigenspaces coincide with these representations.

As stated at the beginning of this section the generalized tangent bundle T Y locally

has the structure TY ⊕T ∗Y . In the following, we first perform a local analysis and consider

the algebraic structure of the bundle over a point on the manifold. Therefore, we use the

notation TY ⊕ T ∗Y instead of T Y .

2.3.2 Pure spinors on a manifold of dimension four

Let us now apply the previous discussion to the case of SU(2)×SU(2) structures on a four-

dimensional manifold Y4. However, let us start with the simpler case of SU(2) structures

or in other words with the case where a single SO(4) spinor η exists on Y4. With its help

we can construct the two pure SO(4, 4) spinors η⊗ η̄ and η⊗ η̄c. Using the definitions (2.9)

and (2.26) we identify13

τ(η ⊗ η̄) =
1

4
e− i J , τ(η ⊗ η̄c) =

1

4
i Ω . (2.34)

We can additionally shift these pure SO(4, 4) spinors by a B-field leaving all conditions

unchanged. Thus, we arrive at

Φ1 =
1

4
e−B−i J , Φ2 =

i

4
e−B ∧ Ω . (2.35)

Let us now turn to the case of general SU(2)× SU(2) structures. We first analyze the

conditions for spinors to be pure and compatible. For the case at hand this is simplified by

the triality property of SO(4, 4) which isomorphically permutes the spinor representation,

its conjugate and the vector representation among each other. In particular, the quadratic

form 〈·, ·〉 on the spinor space is mapped to the usual scalar product on the vector space.

This fact is used in the following.

For a pure spinor Φ the annihilator space LΦ has dimension four. In addition Cheval-

ley’s theorem (2.21) implies

〈Φ,Φ〉 = 0 . (2.36)

As shown in [39], this condition is also sufficient for Φ to be pure. Thus, pure SO(4, 4)

spinors correspond to complex light-like vectors under the triality map. Furthermore, for

Φ to be normalizable we need

〈Φ, Φ̄〉 > 0 . (2.37)

13This can be seen from the definition (2.9) together with the normalization η̄η = 1 and the fact that η

and ηc are orthogonal, i.e. ηtη = 0. Furthermore, using the Fierz identities (A.3) one can show J ∧ J =

J ∧ ∗J = vol4 which allows us to write the first tensor product as an exponential.

– 14 –



J
H
E
P
0
7
(
2
0
0
9
)
0
8
0

Now let us consider two pure normalizable spinors Φi, i = 1, 2 which by defini-

tion satisfy

〈Φi,Φi〉 = 0 , 〈Φi, Φ̄i〉 > 0 . (2.38)

If they are compatible, they also satisfy (2.23), which on Y4 reads

dim(LΦ1 ∩ LΦ2) = 2 . (2.39)

From (2.24) we conclude that both Φi have the same chirality which, together with (2.21),

implies that (2.39) is equivalent to

〈Φ1,Φ2〉 = 0 , 〈Φ1, Φ̄2〉 = 0 . (2.40)

Finally, we can choose the normalization

〈Φ1, Φ̄1〉 = 〈Φ2, Φ̄2〉 6= 0 . (2.41)

Let us close this section by analyzing which possible cases of SU(2)×SU(2) structures

can occur on four-dimensional manifolds. We just argued that Φ1 and Φ2 have the same

chirality so that the corresponding forms are of odd or even degree. We start with the case

where both spinors Φ1 and Φ2 have negative chirality. From (2.30) we see that both pure

spinors are of the form

Φi = Ui ∧ e− i Ji , i = 1, 2 , (2.42)

where Ui are two complex one-forms while Ji are two non-vanishing real two-forms.14 In

addition, the compatibility condition (2.40) implies

U1 ∧ U2 ∧ (J1 − J2) = 0 , U1 ∧ Ū2 ∧ (J1 + J2) = 0 , (2.43)

while the normalization (2.41) translates into

U1 ∧ Ū1 ∧ J1 = U2 ∧ Ū2 ∧ J2 6= 0 . (2.44)

Since U2 = aU1 + bŪ1 does not solve (2.43) and (2.44) we conclude that U2 is linearly

independent of U1 and Ū1 and therefore U1, Ū1, U2, Ū2 form a basis of T ∗Y4. Thus, we

can find four one-forms that form a basis at every point of Y4 and hence the manifold Y is

parallelizable. This means that the two factors of the SU(2)×SU(2) structure just intersect

in the identity. Thus, the structure group of the manifold is trivial. This in turn implies

that Y4 admits four globally defined SO(4) spinors corresponding to string backgrounds

with 32 supercharges. This fact can also be seen from (2.31). Since Φ1,2 are of odd degree,

η1 and η2 are of opposite chirality. Together with their charge conjugated spinors they

lead to four globally defined spinors. Since in this paper we focus on backgrounds with 16

supercharges, we do not discuss this case any further.

Let us turn to the case where both spinors are of even degree. The most general form

for those two spinors is given in (2.31), where now η1 and η2 are of the same chirality to

ensure that Φ1 and Φ2 are of even degree. As we explained above eq. (2.8) a spinor η1 and

14For simplicity we ignore the B-field which however can be easily included.
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its charge conjugate ηc
1 span the whole space of Weyl spinors of a given chirality. Therefore,

η2 has to be a linear combination of η1 and ηc
1. However, this means that we can rotate Φ1

and Φ2 in such a way that they are of the form

Φ1 = e−B ∧ τ(η1 ⊗ η̄1) , Φ2 = e−B ∧ τ(η1 ⊗ η̄c
1) . (2.45)

Therefore, they give a proper SU(2) structure on the manifold, which takes the form (2.35).15

To summarize, due to the fact that the pure spinors have definite chirality there is

no case which interpolates between the trivial structure and the SU(2) structure case.

This can also be understood from the fact that a pair of nowhere vanishing spinors η, ηc

spans the space of given chirality. Therefore, all linearly independent spinors have to be

of opposite chirality and thus cannot be parallel to η at any point in Y4. Thus, generic

SU(2) × SU(2) structures cannot exist but always have to be SU(2) or trivial structures.

Note that our conclusion crucially depends on the assumption that η1 and η2 are nowhere

vanishing. Therefore the case of a generic warp factor deserves a separate analysis which,

however, we do not go into here.

2.4 Moduli space of SU(2) structures

The aim of this section is to determine the moduli space of SU(2) structures. Let us

first observe that an eight-dimensional Weyl spinor of SO(4, 4) decomposes under SU(2)×
SU(2) as16

8s → (2,2) ⊕ 4(1,1) , 8c → 2(2,1) ⊕ 2(1,2) . (2.46)

Note that, exactly as in (2.8), the two conjugate spinors decompose differently. eq. (A.9)

gives a canonical choice for the sign of the chirality operator. Hence, the 8s (8c) rep-

resentation corresponds to forms of even (odd) degree. Let us denote the space of forms

transforming in the (r, s) representation of SU(2)×SU(2) by Ur,s. They can be arranged in

a diamond as given in table 1, where the prime is used to distinguish the several singlets.

In section 2.1 we showed that for a background to have 16 supercharges it is necessary

to remove all massive gravitino multiplets which corresponds to projecting out all SU(2)

doublets. This eliminates the entire 8c representation (or equivalently all odd forms in

U2,1′ , U1,2, U1′,2, U2,1) leaving only the 8s (i.e. the even forms in table 1). This is consis-

tent with the result of the previous section that backgrounds with 16 supercharges require

an SU(2) structure described by pure spinors of positive chirality.

Now we are able to derive the moduli space. For this, let us first discuss the pa-

rameter space of one single normalizable pure SO(4, 4) spinor. The two conditions (2.36)

and (2.37) have a natural interpretation in the isomorphic picture where Φ is a complex

15Strictly speaking, we can only call this a proper SU(2) structure for geometric compactifications since

for non-geometric backgrounds there is globally no projection map T Y → TY such that we can compare the

two SU(2) factors. However, we can do this projection locally, and thus may compare both SU(2) structures

pointwise. In this sense, we can define proper SU(2) structures even for non-geometric backgrounds.
16In section 2.3.2 we showed that for backgrounds with 16 supercharges both SU(2) factors must be

the same after projection to the tangent space. However, as long as we stay in the framework of gener-

alized geometry and consider pure SO(4, 4) spinors, these two factors are different. Therefore we do the

decomposition for SU(2) × SU(2).
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U1,1′

U2,1′ U1,2

U1′,1′ U2,2 U1,1

U1′,2 U2,1

U1′,1

Table 1. Generalized SU(2)× SU(2) diamond.

vector. Equation (2.36) and (2.37) ensure that the real and imaginary part of Φ form a pair

of space-like orthogonal vectors. Therefore, Φ is left invariant by the group SO(2, 4). From

section 2.3 we know that a pure normalizable SO(4, 4) spinor breaks the structure group

to SU(2, 2). Both pictures are consistent with each other since SU(2, 2) is just the double

cover of SO(2, 4). The pure spinor Φ therefore parameterizes the space SO(4, 4)/SO(2, 4).

However, the phase of Φ does not affect the SU(2, 2) structure. Hence the actual parameter

space of a single pure spinor is

MΦ =
SO(4, 4)

SO(2)× SO(2, 4)
. (2.47)

The moduli space of SU(2) structures is more conveniently discussed in terms of the

real and imaginary parts of the two spinors Φi or in other words in terms of four real

vectors Ψa, a = 1, . . . , 4 in the space of even forms. Then (2.40) and (2.41) just translate

into the conditions

〈Ψa,Ψb〉 = c δab vol4 , (2.48)

where c parameterizes the scale of the Ψa. The four Ψa form the singlet corners in table 1

since they are globally defined and thus must be singlets of the structure group.

In order to understand the signature of the SU(2) × SU(2) diamond (table 1) we use

the generalized Hodge operator ∗B defined in (2.32). As we explained in section 2.3.2, the

operator ∗B leaves the SU(2)×SU(2) representations invariant and its eigenspaces coincide

with the representations. The eigenvalues of ∗B are ±1, and the corresponding eigenspaces

are of the same dimension.

The eigenspace with eigenvalue +1 is spanned by the four spinors Ψa, i.e. by the

SU(2) × SU(2) singlets, which is consistent with (2.48). This can be calculated using

the form (2.35) and the fact that the Ji, i = 1, 2, 3, defined in (2.12), are self-dual with

respect to the standard Hodge operator. Therefore, the orthogonal complement U2,2 is

the eigenspace with eigenvalue −1. This shows that a choice of Ψa already determines

the eigenspaces of the generalized Hodge operator and thus the operator itself. Since the

composition of the Mukai pairing with ∗B is positive definite, the eigenvalue corresponding

to some eigenvector of ∗B gives also its signature under the Mukai pairing. Therefore we

conclude that the Mukai pairing is positive definite on the SU(2) × SU(2) singlets and

negative definite on U2,2.

Thus, we see that the Ψa, which respect the condition (2.48), define a space-like

four-dimensional subspace in ΛevenT ∗Y4 or in other words they parameterize the space
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SO(4, 4)/SO(4). However, we also need to divide out the rotational SO(4) symmetry

among the Ψa since it does not change the SU(2) × SU(2) structure. This leaves as the

physical parameter space

MΨa =
SO(4, 4)

SO(4) × SO(4)
. (2.49)

So far we have analyzed the deformation space of SU(2)×SU(2) structures. Let us now

discuss its appearance in the low energy effective theory. There are basically two different

effective theories one can write down. On the one hand it is possible to rewrite the ten-

dimensional supergravity in a form where instead of the ten-dimensional Lorentz group only

SO(1, 5) × SO(4) with 16 supercharges is manifest. In this formulation no Kaluza-Klein

truncation is performed but instead all fields still carry the full ten-dimensional coordinate

dependence of the background (1.1). This is the approach of ref. [34], which we already

discussed at the end of section 2.1. In the corresponding effective theory the space (2.49)

appears as the target space of the Lorentz-scalar deformations which is consistent with the

constraints of the corresponding d = 6 supergravity.

Alternatively, one can perform a Kaluza-Klein truncation and only keep the light

modes on Y4. This amounts to a truncation of the space of even forms to a finite subspace

Λeven
finiteT

∗Y4 with the assumption that the Mukai pairing is non-degenerate on it [13].17

Concretely this means that we can expand the four real spinors Ψa in a basis of Λeven
finiteT

∗Y4.

The generalized Hodge star operator ∗B , which, via the Ψa, is globally defined, splits

Λeven
finiteT

∗Y4 into the eigenspaces of ∗B , i.e.

Λeven
finiteT

∗Y4 = Λeven
+ T ∗Y4 ⊕ Λeven

− T ∗Y4 , (2.50)

where the subscript denotes the eigenvalue with respect to ∗B . Furthermore, these eigenspaces

are orthogonal to each other with respect to the Mukai pairing. Λeven
+ T ∗Y4 consists of

SU(2) × SU(2) singlets only, and thus over each point it is spanned by the Ψa. Therefore,

each element of Λeven
+ T ∗Y4 can be written as a linear combination of the Ψa where the

coefficients may depend on the base point on Y4, i.e. are functions on Y4. However, only

constant coefficients survive the Kaluza-Klein truncation, and thus Λeven
+ T ∗Y4 is spanned

by the Ψa only and has dimension four.

Now let us turn to the eigenspace Λeven
− T ∗Y4. It consists of sections in U2,2 and therefore

we cannot make the same argument as for Λeven
+ T ∗Y4. In contrast to the bundle of SU(2)×

SU(2) singlets, U2,2 might be twisted over the manifold and the dimension of Λeven
− T ∗Y4

may differ from four, say n + 4. Thus, Λeven
finiteT

∗Y4 is a vector space of signature (4, n +

4). The four spinors Ψa satisfy (2.48), and therefore span a four-dimensional space-like

subspace in Λeven
finiteT

∗Y4. The parameter space describing these configurations is just R+ ×
SO(4, n + 4)/SO(n + 4), where the R+ factor corresponds to the gauge freedom contained

in the choice of the parameter c in (2.48).

In order to find the moduli space we still have to remove all gauge redundancies. First

of all, the constant factor c is just the rescaling of the pure spinors, and thus is of no physical

17This just corresponds to the assumption that charge conjugation, i.e. the generalized Hodge star oper-

ator, preserves Λeven
finiteT

∗Y4.
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significance. Furthermore, the SO(3) symmetry of the geometric two-forms is promoted

to an SO(4)-symmetry between the four real components of the compatible pure spinors.

Modding out both redundancies we finally arrive at the moduli space

MNS
d=6 =

SO(4, n + 4)

SO(4) × SO(n + 4)
× R+ , (2.51)

where we now also included the dilaton via the R+ factor consistently with

N = 4 supergravity.

The first factor is a quaternionic space which is related to the fact that the heterotic

string compactified on the same Y4 includes this factor as a subspace. The eight super-

charges of the heterotic compactification require that this scalar field space is quaternionic.

Correspondingly two different superconformal cones can be constructed from (2.51). In

appendix B.1 we discuss the N = 2 hyperkähler cone [30, 31], and show that the corre-

sponding hyperkähler potential is determined in terms of the pure spinors and the Mukai

pairing. It turns out that imposing purity and compatibility conditions are part of taking

the hyperkähler SU(2) quotient [41, 42] of flat space. In appendix B.2 we discuss the flat

cone which arises in the corresponding N = 4 superconformal theory.

The derivation presented so far did not use the absence of SU(2) doublets. We merely

confined our attention to deformations of the two-forms. However, let us note that dΨa is

an SU(2)× SU(2) doublet and therefore it cannot correspond to a deformation parameter

after projecting out the doublets. At best it can be related to the warp factor, which we so

far ignored in the paper. Thus, in the absence of a warp factor and without any doublets

we have dΨa = 0 and Y4 has to be a K3 manifold. This is consistent with the moduli

space (2.51), which for n = 16 coincides with the moduli space of K3 manifolds (modulo

the R+ factor). We will return to this issue in [27].

We want to stress that the arguments given below (2.50) can be made for any vector

bundle that consists of only singlets under the structure group. Since the structure group

does not act on the vector bundle, it must be the trivial bundle and we can give a number

of nowhere vanishing sections that form an orthonormal basis at every point. Since these

sections are globally defined and nowhere vanishing, they can be associated with objects

that define the structure group and therefore they (or locally rescaled versions thereof)

survive the Kaluza-Klein truncation. Furthermore, we can conclude that any section that

survives the truncation must be just a linear combination of these sections. Therefore, the

space of light modes resulting from a Kaluza-Klein truncation on this vector bundle has

the same dimension as the bundle itself.

As an example, let us apply this general theorem to the case of geometric deformations

of some SU(2) structure. The moduli space over a point was derived in section 2.2 to

be (2.13). Again we assume that we can find a consistent Kaluza-Klein truncation to a

subspace Λ2
finiteT

∗Y4 of Λ2T ∗Y4 on which the wedge product is non-degenerate. Then the

Hodge star operator ∗ gives a decomposition

Λ2
finiteT

∗Y4 = Λ2
+T ∗Y4 ⊕ Λ2

−T ∗Y4 , (2.52)

where Λ2
+T ∗Y4 consists of SU(2) singlets only and therefore is spanned by the Ji. Thus,

the signature of Λ2
finiteT

∗Y4 is (3, n + 3) for some n, and the Ji parameterize a space-like
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three-dimensional subspace in this space. Hence, the geometric moduli space is

Mgeom
d=6 =

SO(3, n + 3)

SO(3)× SO(n + 3)
× R+ , (2.53)

where we included the R+ factor for the volume of Y4.

Note that this argument can already be used to identify the signature of the second

cohomology of K3. The space of two-forms on K3 can be decomposed into eigenspaces of

the Hodge operator. Then, the elements of the +1 eigenspace are spanned by the Kähler

form J and the real and imaginary part of the holomorphic two-form Ω defined via (2.9).

All other two-forms in the +1 eigenspace must be linear combinations of these three over

each point. If such a two-form is closed, the coefficients must be constant, and it is just

a linear combination of these three forms in cohomology. Therefore, the +1 eigenspace of

the Hodge operator in the second cohomology class is exactly three-dimensional and hence

the signature of H2(K3, R) is (3, 19).

2.5 Inclusion of the Ramond-Ramond sector

Generalized geometry is a natural generalization of G-structures since it covers the complete

moduli space of the NS-NS sector of string theory. This is due to the fact that the group

acting on the generalized tangent bundle coincides with the T-duality group of string theory.

However, it is also possible to include the RR sector of Type II string theories by extending

the T-duality group to the larger U-duality group which also includes transformations

between the NS-NS and the RR sector [43]. To do so, one extends the generalized tangent

bundle T Y to the exceptional generalized tangent bundle [18, 19]. The spin group over

this bundle is then the U-duality group which coincides with the (non-compact version of

the) exceptional group Ed+1. It seems natural that the formalism of pure spinors should

extend to the case of exceptional generalized geometry [21].

Let us examine this for the case of SU(2)-structures on Y4. In this case the U-duality

group is E5(5) = SO(5, 5) with the T-duality subgroup being SO(4, 4). Let us first look

at the decomposition of the representations of SO(5, 5) in terms of its maximal subgroup

SO(4, 4) × R+. The extra R+-factor corresponds to shifts of the dilaton. The vector

representation of SO(5, 5) decomposes as [44]

10→ 8v
0 ⊕ 1+2 ⊕ 1−2 , (2.54)

while for the spinor representation we have

16→ 8c
+1 ⊕ 8s

−1 . (2.55)

The subscript denotes the charge of the representation under shifts of the dilaton. Finally,

the adjoint of SO(5, 5) decomposes as

45→ 280 ⊕ 8v
+2 ⊕ 8v

−2 ⊕ 10 . (2.56)

Note that because of SO(4, 4) triality, the three 8 representations can be interchanged

pairwise, which, however, has to be done in all three decompositions simultaneously.
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Let us now determine the geometric realizations of these representations. For the

T-duality group SO(4, 4), the vector representation 8v is (locally) given in geometrical

terms by TY4 ⊕ T ∗Y4 and analogously the spinor representations 8s and 8c by ΛevenT ∗Y4

and ΛoddT ∗Y4, respectively. However, SO(4, 4)-triality can interchange the three eight-

dimensional bundles TY4 ⊕ T ∗Y4, ΛevenT ∗Y4 and ΛoddT ∗Y4. To assign them to the rep-

resentations in the right way, we note — as explained in [43] — that the NS-NS and RR

charges together form the 16 representation of E5(5).
18 Since the NS charges come from

Kaluza-Klein and winding modes, they live in the geometrical bundle TY4⊕T ∗Y4. The RR

charges arise from D-branes wrapped on internal cycles and therefore sit in ΛevenT ∗Y4 for

type IIA and ΛoddT ∗Y4 for type IIB, respectively. Hence the 16 representation corresponds

to TY4 ⊕ T ∗Y4 ⊕ ΛevenT ∗Y4 in type IIA and to TY4 ⊕ T ∗Y4 ⊕ ΛoddT ∗Y4 in type IIB [18].

Consequently, the representation 8v is associated with ΛoddT ∗Y4 in type IIA and ΛevenT ∗Y4

in type IIB, respectively. Altogether we thus have

10 = (ΛoddT ∗Y4)0 ⊕ (R)+2 ⊕ (R)−2 ,

16 = (TY4 ⊕ T ∗Y4)+1 ⊕ (ΛevenT ∗Y4)−1 ,

45 = (so(TY4 ⊕ T ∗Y4))0 ⊕ (ΛoddT ∗Y4)+2 ⊕ (ΛoddT ∗Y4)−2 ⊕ (R)0 ,

(2.57)

for type IIA, while in type IIB we have

10 = (ΛevenT ∗Y4)0 ⊕ (R)+2 ⊕ (R)−2 ,

16 = (TY4 ⊕ T ∗Y4)+1 ⊕ (ΛoddT ∗Y4)−1 ,

45 = (so(TY4 ⊕ T ∗Y4))0 ⊕ (ΛevenT ∗Y4)+2 ⊕ (ΛevenT ∗Y4)−2 ⊕ (R)0 .

(2.58)

Here (so(TY4 ⊕ T ∗Y4)) denotes the Lie-Algebra of SO(4, 4) that acts on TY4 ⊕ T ∗Y4. The

subscripts give the charges under shifts of the dilaton, which do not have a geometric inter-

pretation. Note that the bundle ΛevenT ∗Y4 appears in different representations in (2.57) and

in (2.58). This shows that the embedding of the pure SO(4, 4) spinors Φ1,Φ2 ∈ ΛevenT ∗Y4

has to be different for type IIA and type IIB.

In type IIA backgrounds with 16 supercharges the situation is straightforward. We

already argued that in this case we have to project out all SU(2) × SU(2) doublets or

correspondingly ΛoddT ∗Y4 together with TY4⊕T ∗Y4. Eq. (2.57) then implies that SO(5, 5)

is broken to SO(4, 4) × R+ by the projection. This in turn says that all scalar degrees of

freedom coming from the RR-sector are projected out together with the massive gravitinos.

Of course this conclusion is also reached by direct inspection of the massless type IIA

spectrum discussed in section 2.1. This observation also immediately says that the local

moduli space is unchanged and given by (2.51), i.e.

MIIA
d=6 = MNS

d=6 . (2.59)

The analogous discussion in type IIB is slightly more involved. From (2.58) we see that

neither the additional generators of SO(5, 5) are projected out nor can we embed the pure

18With charges we mean those solutions which are point-like particles in six dimensions that are charged

under the NS and RR vectors. In the NS sector, the charges are formed by the momentum and winding

modes of the fundamental string that are charged under gmµ and Bmµ, respectively, while the RR charges

descend from ten-dimensional D-brane solutions.
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spinors into the spinor representation of SO(5, 5). However, from (2.58) we see that we

can embed the SO(4, 4) spinors into the vector representation of SO(5, 5). More precisely,

we can either embed the complex pure spinors Φ1 and Φ2 into complex SO(5, 5) vectors

or, alternatively, use their real and imaginary parts denoted by Ψa in the previous section

and embed them into real SO(5, 5) vector representations. We use (2.58) to decompose the

SO(5, 5) vector into its components

ζ = (ζ+, ζs, ζ̃s) , (2.60)

where ζ+ lives in ΛevenT ∗Y4 while ζs, ζ̃s are the two singlets. Then the embedding of the

four Ψa into SO(5, 5) vectors ζa is given by

ζa = (Ψa, 0, 0) , a = 1, . . . , 4 . (2.61)

This results in a set of four orthonormal space-like SO(5, 5) vectors ζa which — after

modding out the rotational symmetry between them — parameterize the space

Mζa
=

SO(5, 5)

SO(4)× SO(1, 5)
. (2.62)

However, this cannot be the correct parameter space yet. As one can read off

from (2.58), the four vectors ζa are not charged under the dilaton shift. Thus, the dilaton

is not yet included in the parameter space (2.62). Reconsidering (2.54) shows that the two

singlets are charged under dilaton shifts, and together form a real SO(1, 1) vector. If we

impose a normalization condition on this vector, it parameterizes SO(1, 1) and therefore

the dilaton degree of freedom φ. We can embed this SO(1, 1) vector into an SO(5, 5) vector

ζ5 using (2.60), i.e.

ζ5 =
1√
2
(0, eφ, e−φ) . (2.63)

We see that the ζI , I = 1, . . . , 5, are all space-like and satisfy

〈ζI , ζJ〉5 = δIJ , (2.64)

where we gauge-fixed the parameter c in (2.48) to be 1.

The stabilizer of this set of vectors is naturally given by SO(5) ⊂ SO(5, 5) which are

the rotations in the space perpendicular to all ζI . The generators of this SO(5) are the

generators of the SU(2) × SU(2) structure which lie in the T-duality subgroup SO(4, 4)

together with the generators of the following transformation

δβ(2,2) ζ 7−→ 1√
2

(

(e−φζs − eφζ̃s)β(2,2), eφ〈ζ+, β(2,2)〉4, −e−φ〈ζ+, β(2,2)〉4
)

(2.65)

where β(2,2) ∈ U2,2. By a straightforward calculation one can check that these transforma-

tions are indeed generators of SO(5, 5) which stabilize the ζI . Since β(2,2) also transforms

as an SO(4) ≡ SU(2) × SU(2) vector, the transformations (2.65) together with the gener-

ators of SO(4) form the adjoint of SO(5). Therefore, the ζI , I = 1, . . . , 5, obeying (2.64),

span the space SO(5, 5)/SO(5).
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The embedding of the NS sector into SO(5, 5) given in (2.61) and (2.63) is not yet

generic. Consider the following SO(5, 5) transformations that are not part of SO(4, 4) ×
SO(1, 1) and that are not of the form (2.65):19

δα(2,2) ζ 7−→ 1√
2

(

−(e−φζs + eφζ̃s)α(2,2), eφ〈ζ+, α(2,2)〉4, e−φ〈ζ+, α(2,2)〉4
)

,

δα(1,1) ζ 7−→ 1√
2

(

−(e−φζs + eφζ̃s)α(1,1), eφ〈ζ+, α(1,1)〉4, e−φ〈ζ+, α(1,1)〉4
)

,

δβ(1,1) ζ 7−→ 1√
2

(

(e−φζs − eφζ̃s)β(1,1), eφ〈ζ+, β(1,1)〉4, −e−φ〈ζ+, β(1,1)〉4
)

,

(2.66)

where the superscript of the deformation parameter denotes in which SU(2) × SU(2) rep-

resentation the spinor parameter lies. These transformations modify the embedding and

therefore introduce additional degrees of freedom. As we will see shortly they correspond to

the RR-scalars. However, let us first observe that δα(1,1) rotates ζ5 and the ζa, a = 1, . . . , 4,

into each other. Therefore, α(1,1) parameterizes gauge degrees of freedom which enhance

the SO(4) symmetry between the ζa to an SO(5) symmetry between the ζI . The remaining

parameters α(2,2) and β(1,1) genuinely modify the embedding and therefore correspond to

additional physical scalar degrees of freedom. They are precisely the RR-scalars of type

IIB. To see this, we split the formal sum of RR-fields

C = C0 + C2 + C4 ∈ ΛevenT ∗Y4 , (2.67)

into SU(2)× SU(2) representations and associate them with the parameters, i.e.

C = C(2,2) + C(1,1) ≡ α(2,2) + β(1,1) . (2.68)

Note that we only considered the infinitesimal transformations in (2.66). Therefore a finite

shift in the C-fields corresponds to the exponentiation of (2.66).

The previous discussion shows that in type IIB apart from the pure spinors Ψa also the

dilaton and the RR scalars C are part of the moduli space and therefore the space given

in (2.62) has to be modified. We just argued that the basic objects are five SO(5, 5) vectors

ζI that satisfy (2.64) and which are stabilized by SO(5). In addition there is an SO(5) gauge

symmetry rotating the vectors into each other. Therefore the physical parameter space is

MζI
=

SO(5, 5)

SO(5)× SO(5)
. (2.69)

Finally, let us derive the moduli space of type IIB SU(2)-structure backgrounds in six

dimensions. As in section 2.4 we assume that a consistent Kaluza-Klein truncation which

leaves the Mukai-pairing non-degenerate exists. By repeating the argument given at the

end of section 2.4 we conclude that the subspace of positive signature is globally spanned

by the ζI and thus has dimension five. Therefore, the ζI span a space-like five-dimensional

subspace in a vector space of signature (5, n + 5). Hence, the moduli space is

MIIB
d=6 =

SO(5, n + 5)

SO(5)× SO(n + 5)
. (2.70)

19 Note that the specific parameterization chosen depends on the dilaton value and the decomposition of

ΛevenT ∗Y4 into the (1,1) and (2,2) representations.
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This result is consistent with the corresponding chiral supergravity in d = 6 [33].

Both MIIA
d=6 and MIIB

d=6 are the base of a flat cone corresponding to the associated

superconformal supergravity. This is further discussed in appendix B.2.

This concludes our analysis of type II compactified on an SU(2) × SU(2) structure

manifold Y4 of dimension four. Let us now turn to compactifications on six-dimensional

manifolds Y6.

3 Compactifications on SU(2)×SU(2) structure manifolds in four space-

time dimensions

So far we discussed backgrounds with six space-time dimensions and 16 supercharges.

Let us now study backgrounds of the form M3,1 × Y6 but with the same number of su-

percharges. Thus, in this section we focus on six-dimensional manifolds Y6 which have

SU(2) × SU(2) structure.

To be more precise, we consider backgrounds whose Lorentz group is SO(1, 3)×SO(6).

The ten-dimensional spinor representation decomposes accordingly as

16→ (2,4) ⊕ (2̄, 4̄) , (3.1)

where the 2 is a Weyl spinor of SO(1, 3) while the 4 denotes the spinor representation

of SO(6).

Backgrounds allowing for sixteen supercharges must admit two or four globally defined

spinors, which corresponds to manifolds Y6 with a reduced structure group SU(2) or SU(2)×
SU(2), respectively. Similar to section 2, we start with a general analysis of the spectrum of

type II supergravities in such backgrounds, and then determine their moduli space explicitly

by use of the pure spinor formalism of generalized geometry.

3.1 Field decomposition for d = 4

We start by analyzing the massless type II supergravity fields in terms of their repre-

sentations under the four-dimensional Lorentz group and the structure group and show

analogously to section 2.1 how they assemble in N = 4 multiplets, in the spirit of [13].

Again, we use the light-cone gauge and only consider representations of SO(2) instead

of the whole SO(1, 3) Lorentz group. Since we treat the case of an SU(2)×SU(2) structure

group, we examine the decomposition of massless type II supergravity fields under the group

SO(2)×SU(2)×SU(2). For this, let us recall the decomposition of the two Majorana-Weyl

representations 8s and 8c and the vector representation 8v under the breaking SO(8) →
SO(2)× SO(6)→ SO(2)× SU(2). We get

8s → 4+1

2

⊕ 4̄−1

2

→ 21±1

2

⊕ 22±1

2

,

8c → 4−1

2

⊕ 4̄+1

2

→ 21±1

2

⊕ 22±1

2

,

8v → 1±1 ⊕ 60 → 1±1 ⊕ 210 ⊕ 20 ⊕ 2̄0 ,

(3.2)

where the subscript denotes the SO(2) charge, i.e. the helicity. We note that both

Majorana-Weyl representations decompose in the same way under the SU(2) structure
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group. Therefore, we expect type IIA and type IIB compactifications to give the same

theory in d = 4.

In type IIA the massless fermionic degrees of freedom originate from the (8s,8v) and

(8v ,8c) representation of SO(8)L × SO(8)R, while in type IIB they form the (8s,8v) and

(8v ,8s) representation. Under the decomposition SO(8)L × SO(8)R → SO(2) × SU(2)L ×
SU(2)R they split as

(8s,8v)→ 2(1,1)±3

2
,±1

2

⊕ 4(1,1)±1

2

⊕ 4(1,2)±1

2

⊕ (2,1)±3

2
,±1

2

⊕ 2(2,1)±1

2

⊕ 2(2,2)±1

2

,

(8v,8c)→ 2(1,1)±3

2
,±1

2

⊕ 4(1,1)±1

2

⊕ (1,2)±3

2
,±1

2

⊕ 2(1,2)±1

2

⊕ 4(2,1)±1

2

⊕ 2(2,2)±1

2

,

(3.3)

with (8v ,8s) decomposing like the (8v,8c) due to (3.2). We see that half of the gravitinos,

come in the (1,1) representation while the other half is in the doublet representations

(1,2) and (2,1) of SU(2)L×SU(2)R. The latter ones again correspond to massive gravitino

multiplets that must be projected out to end up with standard N = 4 supergravity. After

this projection, the fermionic components in the (1,1) become part of the gravity multiplet,

while the (2,2) components correspond to the fermionic degrees of freedom in the N = 4

vector multiplets.

The bosonic fields can be treated in the same way. In the NS-sector we decompose the

(8v ,8v) which corresponds to EMN = gMN + BMN + φηMN as

Eµν : (1,1)±2 ⊕ (1,1)T ⊕ (1,1)0 ,

Eµm : 2(1,1)±1 ⊕ 2(1,2)±1 ,

Emµ : 2(1,1)±1 ⊕ 2(2,1)±1 ,

Emn : 4(1,1)0 ⊕ 4(1,2)0 ⊕ 4(2,1)0 ⊕ 4(2,2)0 ,

(3.4)

where T denotes the antisymmetric tensor, and the singlet (1,1)0 corresponds to the four-

dimensional dilaton φ. After the projection we are left with the four-dimensional metric,

the antisymmetric two-tensor, four vectors and five scalars E
(1,1)
mn and φ all in the (1,1) rep-

resentation. In addition we also have four scalars E
(2,2)
mn in the (2,2) representation. As in

d = 6, they can be associated with deformations of the SU(2)×SU(2) structure background.

In the RR-sector we need to consider the decomposition of (8s,8c) for type IIA and of

(8s,8s) for type IIB. They both decompose similarly as

(8s,8c)→4(1,1)±1 ⊕ 8(1,1)0 ⊕ 2(1,2)±1 ⊕ 4(1,2)0

⊕ 2(2,1)±1 ⊕ 4(2,1)0 ⊕ (2,2)±1 ⊕ 2(2,2)0 .
(3.5)

Projecting out all SU(2) × SU(2) doublets leaves us with four vectors and eight scalars in

the (1,1) representation and one vector and two scalars in the (2,2) representation.

Together these fields can be arranged into an N = 4 gravity multiplet plus three N = 4

vector multiplets. The gravity multiplet contains the graviton, four gravitini, six vector

fields, four Weyl fermions and two scalars all in the (1,1) representation. The vector

multiplets each contain one vector, four gaugini and six scalars. Two of them are also in

the (1,1) representation while the third vector multiplet is in the (2,2) representation.

We see that, in contrast to d = 6, not all fields in the (1,1) representation are part of the
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gravity multiplet but they also form two vector multiplets. This corresponds to the fact

that the six-dimensional gravity multiplet reduces to a four-dimensional gravity multiplet

plus two vector multiplets.

As we already discussed in section 2.1, these multiplets still consist of ten-dimensional

fields that are reordered in such a way that they form N = 4 multiplets. In the correspond-

ing rewriting of the action only SO(1, 3) × SO(6) symmetry and N = 4 supersymmetry

are manifest. Then we projected out the SU(2)× SU(2) doublets to achieve a theory that

actually allows only for N = 4 supersymmetry.

3.2 Y6 with SU(2) structure

A compact six-dimensional manifold Y6 has a structure group G that is a subgroup of

SO(6), which acts on spinors via its double cover SU(4). One globally defined and nowhere

vanishing spinor η on Y6 defines an SU(3) structure [5, 7]. This is due to the fact that the

structure group G must admit a singlet and this requires SU(4) to be broken to a subgroup

contained in SU(3). Therefore, the existence of η implies G ⊂ SU(3).

If we assume that there are two such spinors η1 and η2 that are orthogonal at each

point, the structure group is broken further. Now there must be two singlets of the structure

group and therefore, G is contained in SU(2). The spinors η1 and η2 each define an SU(3)

structure which intersect in an SU(2) structure. The two distinct SU(3)-structures are

defined by [7, 22]

J (1)
mn := − i η̄1γmnη1 , Ω(1)

mnp := i η̄c
1γmnpη1 , m, n, p = 1, . . . , 6 ,

J (2)
mn := − i η̄2γmnη2 , Ω(2)

mnp := i η̄c
2γmnpη2 ,

(3.6)

where our spinor convention are summarized in appendix A. With the use of the Fierz

identities (A.4) one can express them in terms of an SU(2) structure:

J (1) = J +
i

2
K ∧ K̄ , Ω(1) = Ω ∧K ,

J (2) = J − i

2
K ∧ K̄ , Ω(2) = Ω ∧ K̄ .

(3.7)

The SU(2) structure is defined by the complex one-form [7, 22]

Km := η̄c
2γmη1 , (3.8)

and the two-forms J and Ω given by

Jmn = −1

2
i (η̄1γmnη1 + η̄2γmnη2) , Ωmn = i η̄2γmnη1 . (3.9)

J and Ω fulfill (2.10), while K satisfies

KmKm = 0 , K̄mKm = 2 , ιKJ = 0 , ιKΩ = ιK̄Ω = 0 . (3.10)

K also specifies an almost product structure

P n
m := KmK̄n + K̄mKn − δ n

m , (3.11)
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in that

P n
m P p

n = δ p
m . (3.12)

As can be seen from (3.7), this almost product structure is related to the almost complex

structures J (i) of the two SU(3) structures by

P n
m = −J

(1) p
m J

(2) n
p . (3.13)

From (3.10) we can see that Km and K̄m are both eigenvectors of P n
m with eigenvalue

+1. The vectors orthogonal to Km, K̄m have eigenvalue −1 as can be seen from (3.11).

Therefore, Km and K̄m even span the +1 eigenspace.

In terms of stable forms, an SU(2)-structure on Y6 can be defined by a global complex

one-form20 K which breaks the structure group SO(6) to SO(4) and — as on Y4 — by

three stable two-forms Ji that reduce this group further to SU(2). To assure this breaking

of the structure group, all of these forms have to be compatible with each other in that

they satisfy (2.11) and (3.10).

Actually, an almost product structure P n
m that has a positive eigenspace of dimension

two and a globally defined, nowhere vanishing spinor η are enough to define an SU(2)

structure on a manifold of dimension six. The reason is that P n
m reduces the structure

group to SO(2)× SO(4) and therefore also reduces the SU(3) structure defined by η to an

SU(2) structure. This fits nicely with the fact that the existence of P n
m is already enough

to assure that the quantities defined in (3.6) are of the form (3.7) and thereby indeed

define an SU(2) structure on the manifold. Correspondingly, the two globally defined

spinors that reduce the structure group to SU(2) are η and (vmγmηc) with vm is any (real)

+1-eigenvector of P .

Now let us derive the parameter space of SU(2) structures. As before, we have to

ensure that we compactify to N = 4, and therefore project out all SU(2) doublets, as

explained in section 3.1. As we show in appendix C this projection forces the almost

product structure P to be rigid. Therefore, the parameter space splits into a part for the

two-dimensional identity structure and one for deformations of the SU(2) structure in the

four-dimensional subspace. The former is parameterized by K, the latter one by J and Ω.

The local parameter space of the SU(2) structure part was already derived in section 2.2

and is given by (2.13). The identity structure is parameterized by the complex one-form K

in a two-dimensional space. Its length corresponds to K∧K̄ and parameterizes the volume

of the two-dimensional space. The group SU(1, 1) ≡ Sl(2, R) leaves K ∧ K̄ invariant, while

it acts freely on K. Therefore, its action parameterizes the remaining freedom in choosing

K. Since the phase of K is of no relevance, we have to mod out this degree of freedom, and

end up with the parameter space Sl(2, R)/SO(2). Therefore, after including the degree of

freedom that correspond to the volume of the four-dimensional subspace, we end up with

the parameter space

MK,Ji
=

SO(3, 3)

SO(3)× SO(3)
× R+ ×

Sl(2, R)

SO(2)
× R+ . (3.14)

20Note that every one-form is stable by definition.
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By the argument we presented in section 2.4, all subspaces which consist of SU(2) singlets

remain unchanged when we perform a Kaluza-Klein truncation. Hence, as in section 2.4

only the SU(2) structure parameter space can change and the moduli space is

Mgeom
d=4 =

SO(3, 3 + n)

SO(3) × SO(3 + n)
× R+ ×

Sl(2, R)

SO(2)
× R+ . (3.15)

3.3 Generalized geometry and SU(2)× SU(2) structures on Y6

As in section 2.3 we now generalize the previous discussion to the case of SU(2) × SU(2)

structures using pure SO(6, 6) spinors. In six dimensions, the condition for the existence

of pure spinors has been analyzed in great detail by Hitchin [6]. The result is that a

normalizable pure SO(6, 6) spinor Φ is in one-to-one correspondence to a real stable SO(6, 6)

spinor and hence looses half of its degrees of freedom.

As we already noted in (2.23) two normalizable pure SO(6, 6) spinors Φ+ and Φ− are

compatible if and only if [9]

dimLΦ+ ∩ LΦ− = 3 . (3.16)

Eq. (2.24) then implies that Φ± must be of opposite chirality. From (2.24) we know that

for two spinors Φ± of opposite chirality the annihilator spaces LΦ± intersect in an odd-

dimensional space. Thus, eq. (3.16) can be understood as telling us that LΦ+ ∩ LΦ− must

be neither one- nor five-dimensional. From (2.21) one can deduce [12, 13]

〈Φ+,ΓMΦ−〉 = 〈Φ̄+,ΓMΦ−〉 = 0 , (3.17)

where ΓM ,M = 1, . . . , 12, are gamma-matrices of SO(6, 6). This is a more convenient form

for the compatibility condition. In addition, we can impose the normalization condition

〈Φ+, Φ̄+〉 = 〈Φ−, Φ̄−〉 . (3.18)

So far, (3.17) and (3.18) only define an SU(3) × SU(3) structure on Y6. In order to

construct an SU(2)×SU(2) structure, one has to introduce further objects that are globally

defined and compatible with the spinors introduced so far. One way to proceed is by

mimicking the SU(2) structure construction and define two SU(3)× SU(3) structures with

compatibility conditions imposed such that they intersect in an SU(2) × SU(2) structure.

Each SU(3) × SU(3) structure already defines a generalized metric on TY6 ⊕ T ∗Y6, and

these two generalized metrics must coincide in a well-defined string background. We could

express each SU(3) × SU(3) structure in terms of a pair of compatible pure spinors Φ±
(i),

i = 1, 2, and formulate conditions on these pure spinors to ensure that we end up with an

SU(2)× SU(2) structure. However, it is more elegant to start with four generalized almost

complex structures JΦ±

(i)
(cf. section 2.3) and switch to the notion of pure spinors later.

First of all, to ensure that we are able to diagonalize all four JΦ±

(i)
simultaneously,

we demand that they commute with each other. This implies that we can decompose

(TY6⊕T ∗Y6)C in the way of (2.17) for each pair JΦ±

(i)
, i = 1, 2, simultaneously. Each of the

four components in (2.17) is of complex dimension 3, and one of the SU(3) factors of the

SU(3)×SU(3) structure group acts on L++ and L−− while the other one acts on L+− and
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L−+. We want to define both pairs in such a way that together they break the structure

group to SU(2) × SU(2). For this, the complex three-dimensional SU(3) representation

L++ must split into a two- and a one-dimensional part. The same must hold for the other

components in (2.17). This corresponds to

dimC

(

L
(1)
++ ∩ L

(2)
−−

)

= 2 = dimC

(

L
(1)
−− ∩ L

(2)
++

)

,

dimC

(

L
(1)
+− ∩ L

(2)
−+

)

= 2 = dimC

(

L
(1)
−+ ∩ L

(2)
+−

)

.
(3.19)

Note that the first equation implies the second and the third one implies the fourth.

Analogously to (3.13), we can also define two generalized almost product structures by

P± = −JΦ±

(1)
JΦ±

(2)
, (3.20)

which satisfy

P2
± = 1 . (3.21)

In order to determine the dimension of the eigenspaces let us observe that (3.19) implies

dimC LΦ±

(1)
∩ LΦ̄±

(2)
= dimC LΦ̄±

(1)
∩ LΦ±

(2)
= 4 , (3.22)

where we used the relations

LΦ+
(i)

= L
(i)
++ ⊕ L

(i)
+− , LΦ−

(i)
= L

(i)
++ ⊕ L

(i)
−+ , i = 1, 2 . (3.23)

Therefore, both P+ and P− have an eigenspace of dimension eight for the eigenvalue −1,

and correspondingly, an eigenspace of dimension four for the eigenvalue +1.

Let us now show that the P± are identical. To see this we recall that both pairs of

pure spinor must define the same generalized metric G on TY6 ⊕ T ∗Y6, i.e.

G = IJΦ+
(1)
JΦ−

(1)
= IJΦ+

(2)
JΦ−

(2)
, (3.24)

where I is the bilinear form of split signature that is induced by the canonical pairing of

tangent and cotangent space. Therefore, JΦ+
(2)

is already determined by the other pure

spinors, via the equation

JΦ+
(2)

= −JΦ+
(1)
JΦ−

(1)
JΦ−

(2)
. (3.25)

This implies

P+ = −JΦ+
(1)
JΦ+

(2)
= JΦ+

(1)
JΦ+

(1)
JΦ−

(1)
JΦ−

(2)
= −JΦ−

(1)
JΦ−

(2)
= P− . (3.26)

Therefore we see that an SU(2) × SU(2) structure can alternatively be defined by a pair

of compatible pure spinors Φ+
(1), Φ−

(1) and a generalized almost product structure P which

has the following properties:

1. P2 = 1 .

2. P is symmetric with respect to I.
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3. P commutes with the generalized almost complex structures JΦ±

(1)
.

4. The eigenspaces of P to the eigenvalues −1 and +1 are of dimension 8 and

4, respectively.

These conditions replace (3.19). Note that the second and third conditions ensure that P
is also symmetric with respect to the metric defined by JΦ+

(1)
and JΦ−

(1)
.

Since the generalized almost complex structures JΦ−

(i)
are skew-symmetric with re-

spect to the canonical pairing and commute with each other, P is indeed symmetric with

respect to the canonical pairing by construction. This implies that the canonical pairing

is block-diagonal with respect to the splitting of the bundle induced by P. Therefore,

P reduces the structure group to SO(4, 4) × SO(2, 2). Since it commutes with JΦ+
(1)

and

JΦ−

(1)
, both generalized almost complex structures are similarly block-diagonal with respect

to this splitting.

Thus, we conclude that reducing an SU(3) × SU(3) structure to some SU(2) × SU(2)

structure corresponds to the fact that one is able to globally split TY6 ⊕ T ∗Y6 into

TY6 ⊕ T ∗Y6 = (T2Y6 ⊕ T ∗
2 Y6)⊕ (T4Y6 ⊕ T ∗

4 Y6) , (3.27)

where T4Y6⊕T ∗
4 Y6 is the eight-dimensional vector bundle that is the −1 eigenspace of P at

every point, and T2Y6 ⊕ T ∗
2 Y6 is correspondingly the four-dimensional vector bundle that

forms the +1 eigenspace of P at every point.21 The pure spinor pair Φ±
(1), corresponding

to JΦ±

(1)
, defines some SU(2)× SU(2) structure on T4Y6 ⊕ T ∗

4 Y6 and some trivial structure

on T2Y6 ⊕ T ∗
2 Y6, i.e. T2Y6 ⊕ T ∗

2 Y6 is the trivial bundle. On T4Y6 ⊕ T ∗
4 Y6, we can redo the

analysis of section 2 since the dimension of T4Y6 ⊕ T ∗
4 Y6 is eight.

Let us make this structure slightly more explicit by considering the pure spinors Φ±

that correspond to JΦ± .22 First, let us fix the generalized almost product structure P
and investigate the structure of Φ+ and Φ−. Eq. (3.27) induces a splitting of the SO(6, 6)

spinor space Λ•T ∗Y6, i.e.

Λ•T ∗Y6 = Λ•T ∗
2 Y6 ∧ Λ•T ∗

4 Y6 , (3.28)

where Λ•T ∗
2 Y6 and Λ•T ∗

4 Y6 are the SO(2, 2) and the SO(4, 4) spinor bundle over Y6, re-

spectively. This decomposition carries over to the chiral subbundles

ΛevenT ∗Y6 = ΛevenT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 ⊕ ΛoddT ∗
2 Y6 ∧ ΛoddT ∗

4 Y6 ,

ΛoddT ∗Y6 = ΛevenT ∗
2 Y6 ∧ ΛoddT ∗

4 Y6 ⊕ ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 .
(3.29)

The direct sum on the right-hand side holds globally, since, by use of P, we can define

chirality operators for Λ•T ∗
2 Y6 and Λ•T ∗

4 Y6 independently. In other words, the structure

group does not mix the spinor bundles ΛevenT ∗
4 Y6 and ΛoddT ∗

4 Y6 and the spinor bundles

ΛevenT ∗
2 Y6 and ΛoddT ∗

2 Y6.

21Properly written, (3.27) reads T Y6 = T2Y6 ⊕ T4Y6.
22Here and in the following, we drop the subscripts of Φ+

(1)
and Φ−

(1)
.
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Moreover, since the generalized almost complex structures commute with P, they split

under (3.27) into a generalized almost complex structure on each component. Correspond-

ingly, using (3.29), the pure spinors Φ+ and Φ− globally decompose into pure spinors on

the spinor subbundles. As already argued above, the spinor bundles on the right-hand side

of eq. (3.29) do not mix under the action of the structure group, and therefore, the compo-

nents of Φ+ and Φ− on the subbundles can be analyzed separately. Their components on

Λ•T ∗
4 Y6 must define an SU(2) × SU(2) structure. However, we already discussed the case

of an SU(2)×SU(2) structure group on some vector bundle of dimension eight in section 2.

We know from section 2.3 that an SU(2)×SU(2) structure group on T4Y6⊕T ∗
4 Y6 is already

defined by two pure spinors that must have the same chirality. Any additional nowhere

vanishing, globally defined pure spinor would break the structure group further. Thus, we

can distinguish two cases: Either both spinor components on Λ•T ∗
4 Y6 lie in ΛoddT ∗

4 Y6 or in

ΛevenT ∗
4 Y6. Note that in both cases we are left with two pure spinors of opposite chirality

in Λ•T ∗
2 Y6 which define a trivial structure on T2Y6 ⊕ T ∗

2 Y6.

In the first case, both pure spinors on T4Y6 ⊕ T ∗
4 Y6 are of negative chirality. As we

showed in section 2.3, these two pure spinors define an SU(2) × SU(2) structure where

the two SU(2) factors have trivial intersection. Thus Y6 admits a trivial structure, i.e.

is parallelizable, and the background has 32 supercharges. As in section 2.3, we do not

discuss this case any further.

The second possibility is that both spinor components are of positive chirality and

define — analogously to section 2.3 — a proper SU(2) structure on the manifold. Thus,

also on Y6 the possibility of an intermediate SU(2)×SU(2) structures does not exist. Instead

one can only have an SU(2) structure or a trivial structure, as we already concluded in our

analysis for Y4 in section 2.3. In the SU(2) structure case we can write

Φ+ = Θ+ ∧Φ1 , Φ− = Θ− ∧Φ2 , (3.30)

where Θ± are SO(2, 2) spinors of opposite chirality and therefore define a trivial structure

on T2Y6 ⊕ T ∗
2 Y6. The SO(4, 4) spinors Φ1 and Φ2 are pure and of even chirality and define

the SU(2) structure on T4Y6 ⊕ T ∗
4 Y6. This is precisely the situation we already discussed

in section 3.2. There the SU(2) structure was defined in terms of the two spinors ηi. The

relation between the ηi and the Φ± is analogously to (2.31) described by

Φ+ = e−B ∧ τ(η1 ⊗ η̄2) , Φ− = e−B ∧ τ(η1 ⊗ η̄c
2) , (3.31)

where B is the NS two-form, which is not determined by the ηi. We can insert (2.26) and

relate the components in (3.30) to the quantities K,J,B and Ω via (3.8) and (3.9). We

end up with

Θ+ = e−B(2)+
1
2
K∧K̄ , Θ− = K , Φ1 =

i

4
e−B(4) ∧ Ω , Φ2 =

1

4
e−B(4)−iJ , (3.32)

and therefore

Φ+ =
i

4
e−B(2)+

1
2
K∧K̄ ∧ e−B(4) ∧ Ω , Φ− =

1

4
K ∧ e−B(4)−iJ , (3.33)
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where we denoted the components of the B field on Λ2T ∗
2 Y6 by B(2) and on Λ2T ∗

4 Y6 by B(4),

respectively. As mentioned earlier, there is some gauge freedom in choosing η1 and η2 out

of the space of SU(2) singlets, which translates into a rotational gauge freedom between

Φ1 and Φ2. Therefore, it is more convenient in the following not to specify the Φi in terms

of J and Ω.

3.4 Moduli space of Y6

Now we are in the position to discuss the moduli space of SU(2) structures on Y6. By

the splitting we described above, we can do this independently for the pure spinors on

T2Y6⊕T ∗
2 Y6 and the ones on T4Y6⊕T ∗

4 Y6. On the eight-dimensional subspace T4Y6⊕T ∗
4 Y6

the arguments are the same as on Y4 and thus Φ1 and Φ2 form the moduli space (2.49).

Additionally, the SO(2, 2) spinors Θ+ and Θ− each parameterize a moduli space on

their own. The Lie algebra splits according to

so(2, 2) = sl(2, R)T ⊕ sl(2, R)U , (3.34)

where the generators of the two sub-algebras in (3.34) are given explicitly in (D.6)

and (D.7). The first sub-algebra sl(2, R)T just acts on Θ+, while the second sl(2, R)U
acts on Θ−. The degrees of freedom in Θ+ correspond to a two-form acting on the nega-

tive eigenspace of P and a form of degree zero. Together they form an Sl(2, R)T doublet

which is naturally normalized. Furthermore, we have to mod out the gauge degree of free-

dom corresponding to the phase of Θ+. From (2.30) we learn that the remaining complex

degree of freedom of Θ+ is given by the volume and the B-field. It spans the parameter

space Sl(2, R)T /SO(2). Similarly, Θ− can be expanded in the basis of one-forms on the

negative eigenspace of P, which is two-dimensional, and therefore defines an Sl(2, R)U dou-

blet analogously to Θ+, exhibiting the same normalization and gauge degree of freedom.

Hence, Θ− spans the moduli space Sl(2, R)U/SO(2).23

Additionally to the parameter space of the pure spinors, we have the dilaton field φ

in the NS-NS sector, which is complexified by the dualized B field in four dimensions, and

forms the moduli space Sl(2, R)S/SO(2). So altogether we have the (local) moduli space

MΘ±,Φi
=

SO(4, 4)

SO(4)× SO(4)
× Sl(2, R)S

SO(2)
× Sl(2, R)T

SO(2)
× Sl(2, R)U

SO(2)
. (3.35)

To derive the moduli space, we need to perform a Kaluza-Klein truncation as we

already discussed in detail in section 2.4. The first factor describes the deformations of the

SU(2) × SU(2) structure on T4Y6 ⊕ T ∗
4 Y6, analogously to (2.49). Therefore the first factor

leads to the same expression for the global moduli space of the truncated theory as in (2.51).

To derive the global moduli space for the other three factors, we note that T2Y6⊕T ∗
2 Y6 and

Λ•T ∗
2 Y6 consist of SU(2)× SU(2) singlets only and thus are trivial bundles. By the general

argument on spaces that consist only of structure group singlets which we presented in

section 2.4, we conclude that the moduli spaces of Θ± are unchanged. Since the dilaton

23Note that for Y6 = K3 × T 2, Θ± parameterize the Kähler and complex structure deformations of the

T 2, respectively.
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and the B-field transform as scalars under the internal Lorentz group of Y6, their moduli

space also stays the same after Kaluza-Klein truncation. Therefore, the moduli space of

the Kaluza-Klein truncated theory is

MNS
d=4 =

SO(4, n + 4)

SO(4) × SO(n + 4)
× Sl(2, R)S

SO(2)
× Sl(2, R)T

SO(2)
× Sl(2, R)U

SO(2)
. (3.36)

So far we left P fixed for the whole discussion. Indeed, in appendix C we show that

projecting out all massive gravitinos also eliminates all degrees of freedom that correspond

to deformations of P. Therefore, (3.36) indeed describes the NS moduli space of SU(2)

structure compactifications in d = 4.

As we already noted at the end of section 2.4, the components of the exterior derivatives

dΦ1,2 which are in ΛoddT ∗
4 Y6, i.e. with all legs in the directions of the four-dimensional part

of the tangent space, are SU(2) doublets and therefore in the absence of a warp factor are

projected out. This additionally constrains Y6 in that its four-dimensional component has

to be a K3 manifold. Or in other words Y6 has to be a K3 fibered over a (twisted) torus.24

This situation was already analyzed in ref. [23] and we will return to it in [27].

3.5 R-R scalars and exceptional generalized geometry

Now we want to include the RR-fields by extending the pure spinor formalism again to

exceptional generalized geometry. We will mainly use the Ansatz proposed in [21] but

applied to the situation of some SU(2)-structure. The main difference will be the existence

of a generalized almost product structure P which has already been introduced above and

the projection procedure to N = 4.

The U-duality group in d = 4 is E7(7) with the T-duality subgroup being SO(6, 6). Let

us first recall the decomposition of the representations of E7(7) in terms of the maximal

subgroup Sl(2, R)S × SO(6, 6). The factor Sl(2, R)S is the S-duality subgroup acting on

the four-dimensional dilaton φ complexified by the dualized B-field. The fundamental

representation of E7(7) decomposes as [45]

56→ (2,12) + (1,32) , (3.37)

while the adjoint of E7(7) decomposes as

133→ (3,1) + (1,66) + (2, 3̄2) . (3.38)

As in section 2.5, we can derive the geometrical realization of these representations by

considering the charges in d = 4. It was shown in ref. [43] that the electric and magnetic

charges form the 56 representation of E7(7). The (2,12) part in (3.37) represents the NS-

NS charges, i.e. winding and momentum modes as well as NS5-branes and KK-monopoles,

and thus corresponds to a doublet in TY6⊕T ∗Y6.
25 The (1,32) represents the RR charges,

24We thank Danny Mart́ınez-Pedrera for discussions on this issue.
25In contrast to [18], we do not distinguish the bundles TY6 ⊕ T ∗Y6 and Λ5TY6 ⊕ Λ5T ∗Y6 because they

are related by a volume form on Y6. Such a volume form we already chose to identify the SO(6, 6) spinor

bundles with ΛevenT ∗Y6 and ΛoddT ∗Y6. Thus, we can identify the bundles TY6⊕T ∗Y6 and Λ5TY6⊕Λ5T ∗Y6,

and write them as a doublet under the S-duality group.
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which correspond to ten-dimensional D-brane solutions. In type IIA, they are elements of

ΛevenT ∗Y6, while in type IIB they live in the bundle ΛoddT ∗Y6 [43]. Therefore, (3.37) is

realized geometrically by [18]

56IIA = (TY6 ⊕ T ∗Y6)2 ⊕ (ΛevenT ∗Y6)1 (3.39)

for type IIA, and by

56IIB = (TY6 ⊕ T ∗Y6)2 ⊕ (ΛoddT ∗Y6)1 (3.40)

in type IIB. The subscript denotes the representation under the S-duality group Sl(2, R)S ,

which has no geometric realization. Correspondingly, the decomposition of the adjoint of

the U-duality group is realized geometrically by

133IIA = (R)3 ⊕ (so(TY6 ⊕ T ∗Y6))1 ⊕ (ΛoddT ∗Y6)2 (3.41)

for type IIA, and

133IIB = (R)3 ⊕ (so(TY6 ⊕ T ∗Y6))1 ⊕ (ΛevenT ∗Y6)2 (3.42)

for type IIB. As on four-dimensional manifolds Y4, we see that the spinor representations

of SO(6, 6) are related to the RR-fields C. In type IIA, the C-fields define an SO(6, 6)

spinor of odd chirality via26

CIIA = C1 + C3 + C5 ∈ ΛoddT ∗Y6 , (3.43)

while in type IIB, the spinor is of even chirality and defined by

CIIB = C0 + C2 + C4 + C6 ∈ ΛevenT ∗Y6 . (3.44)

This fits nicely with the SO(6, 6) spinors appearing in (3.41) and (3.42). However, in

both (3.41) and (3.42) there appears a doublet of SO(6, 6) spinors in the adjoint of E7(7).

As we will see below, one linear combination of these spinors is in the stabilizer of the

SU(2) × SU(2) structure, while the remaining linearly independent linear combination

corresponds to the RR scalar fields.

We have argued in section 3.1 that in order to compactify on a non-trivial SU(2)×SU(2)

structure, we have to project out all SU(2) × SU(2) doublets. We already know from

section 3.3 that only the SO(2, 2)× SO(4, 4) subgroup of SO(6, 6) survives this projection.

Therefore, the (1,66) component in (3.38) is projected to the direct sum of the adjoints

of SO(2, 2) and SO(4, 4). Furthermore, the first component in (3.38) consists of SO(6, 6)

singlets. Therefore, it is also a singlet under SU(2) × SU(2) and thus invariant under the

projection. Hence, we are left with the last component in (3.38), which is a doublet of

SO(6, 6) spinors.

Due to the existence of the generalized almost product structure P, we can decompose

the SO(6, 6) spinor bundles as done in (3.29). Furthermore, as shown in section 2.4 we

26Note that we use the “democratic” formulation for the RR-fields, and that we only consider scalar

degrees of freedom. Therefore, all legs of the forms in (3.43) and (3.44) are internal.
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know that the projection to N = 4 removes Λodd
4 T ∗Y6 and we are left with only half of the

degrees of freedom
ΛevenT ∗Y6 −→ ΛevenT ∗

2 Y6 ∧ ΛevenT ∗
4 Y6 ,

ΛoddT ∗Y6 −→ ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 .
(3.45)

Therefore, only part of the U-duality group E7(7) survives this projection. In type IIA, we

end up with the subgroup GIIA whose adjoint is the subspace of (3.41) given by

gIIA = (R)3 ⊕ so(T2Y6 ⊕ T ∗
2 Y6)1 ⊕ so(T4Y6 ⊕ T ∗

4 Y6)1 ⊕ (ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6)2 . (3.46)

In type IIB, we find the subgroup GIIB whose adjoint is the subspace of (3.42) given by

gIIB = (R)3 ⊕ so(T2Y6 ⊕ T ∗
2 Y6)1 ⊕ so(T4Y6 ⊕ T ∗

4 Y6)1 ⊕ (ΛevenT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6)2 . (3.47)

In appendix D.1 we show that both GIIA and GIIB define SO(6, 6)×Sl(2, R)T/U subgroups

of E7(7). The Sl(2, R)T/U factor is generated by one of the two sub-algebras in (3.34),

depending on whether one considers type IIA or type IIB. Sl(2, R)T acts on the Kähler

part of the identity structure on T2Y6⊕T ∗
2 Y6 and forms the extra factor in type IIA, while

Sl(2, R)U acts on its complex structure part and forms the extra factor in type IIB.

3.6 Including the R-R sector

Finally, in this section we determine the moduli space of SU(2)×SU(2) structure compact-

ifications of type II theories in d = 4. We will mainly consider type IIA but the type IIB

results are easily obtained by changing some chiralities and an exchange of sl(2, R)T with

sl(2, R)U in the Lie algebra so(2, 2). (For more details, see appendix D.1.)

We start by embedding the pure SO(6, 6) spinors into some E7(7) representations. The

spinor Φ+ of positive chirality is embedded into the fundamental representation via

λ = (λA
i , λ+) = (0,Re(Φ+)) , i = 1, 2 , (3.48)

where we used the decomposition (3.37) and (D.1).27 The stabilizer of λ is determined

in appendix D.2.1 to be SO(4, 6) × SO(2) ⊂ SO(6, 6) × Sl(2, R)T . Furthermore the phase

of Φ+ is just some gauge degree of freedom. In the E7(7) covariant formalism this gauge

freedom manifests itself in the fact that λ and

λ̃ = (0, Im(Φ+)) (3.49)

describe the same SU(2) × SU(2) structure. They are related by the generalized almost

complex structure JΦ+ which embeds into the adjoint of E7(7). Therefore, after modding

out the transformations generated by JΦ+, the parameter space for λ is

Mλ =
SO(6, 6)

SO(2)× SO(4, 6)
× Sl(2, R)T

SO(2)
. (3.50)

In appendix D.2.1 we determine the action of the E7(7) transformations on the embed-

ding (3.48).

27Note that pure SO(6, 6) spinors are completely determined by their real or imaginary part (or any linear

combination) [6].
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The pure SO(6, 6) spinor of negative chirality cannot be embedded into the fundamen-

tal of E7(7) but only into its adjoint. However, we see from (3.38) that we must embed it

as an Sl(2, R)S doublet. Therefore, we introduce some complex vector ui, i = 1, 2, which

is stable and normalized, i.e.

|u|2 = uiǫijū
j = 1 . (3.51)

ui describes the complexified dilaton degree of freedom. Then we embed Φ− via

µ1 = (µ̂i
j, µ

A
B , µi−) = (0, 0,Re(uiΦ−)) . (3.52)

Note that the overall phase of ui is just a choice of gauge. The calculation of the moduli

space however is a bit more involved than expected. Naively one would think that anal-

ogously to the gauge freedom of λ the gauge freedom in µ1 is some phase rotation which

relates µ1 to

µ2 = (0, 0, Im(uiΦ−)) . (3.53)

However, these two elements of the adjoint do not commute, and therefore determine a

third one which reads

µ3 =
i

4k
〈Φ̄−,Φ−〉(uiūj + ūiuj, i |u|2(JΦ−)AB, 0) , (3.54)

where JΦ− is the generalized almost complex structure corresponding to Φ− and defined

by [13]

(JΦ−)AB = i
〈Φ̄−,ΓABΦ−〉
〈Φ̄−,Φ−〉 . (3.55)

The normalization k is defined as

k =

√

1

2
|u|2〈Φ̄−,Φ−〉 . (3.56)

As explained in section 2.3.1, JΦ− determines Φ− up to a phase. As a consequence, µ3

determines µ1 and µ2 up to a rotation between those two. Hence, each µa determines the

other two. It turns out that the µa define a highest weight SU(2) embedding of ui and the

pure spinor Φ− in E7(7) [21, 30]. Indeed, the µa fulfill the su(2) algebra

[µa, µb] = 2kǫabcµc . (3.57)

Purity of Φ− together with (3.51) is equivalent to the fact that the µa indeed form an su(2)

algebra. Furthermore, the µa share the same stabilizer and make the SU(2) gauge freedom

manifest. By calculating the stabilizer and modding out all gauge degrees of freedom, we

end up with the parameter space

Mµ =
SO(6, 6)

SO(4) × SO(2, 6)
. (3.58)

The calculations are a bit lengthy and are presented in appendix D.2.2. There, we also

give the action of the additional E7(7) transformations on the µa.
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Finally, we consider the common parameter space of both objects. By imposing [21]

µa · λ = 0 , (3.59)

we generalize the usual compatibility conditions (3.17). We compute in appendix D.2.3

that the (local) moduli space is

Mλ,µ =
SO(6, 6)

SO(6) × SO(6)
× Sl(2, R)T

SO(2)
, (3.60)

where we also modded out the additional gauge transformations that arise as symmetries

between the Λeven
4 T ∗Y components of Φ+ and Φ−, as we already did in the case of compact-

ification to six dimensions. The embeddings (3.48) and (3.52) can be deformed by some

E7(7) transformation. This corresponds to the SO(6, 6) deformations which we discussed

already in the last sections and to additional degrees of freedom that can be identified with

the RR scalars.

It is now easy to understand the moduli space. For this we note that the subspace of

positive signature in the first factor in (3.60) is spanned by SU(2) × SU(2) singlets. By

applying the general argument presented in section 2.4, we know that after the Kaluza-

Klein truncation this subspace is still of dimension six. However, the space of negative

signature is spanned by (2,2) representations of SU(2) × SU(2). Therefore, its dimension

can be different globally, say n+6. For the second factor, we can argue in the same way as

in section 3.4 to show that it gives the same moduli space globally. Therefore, the moduli

space is

MIIA
d=4 =

SO(6, 6 + n)

SO(6) × SO(6 + n)
× Sl(2, R)T

SO(2)
. (3.61)

In appendix D.1 we give a prescription how to obtain the corresponding type IIB mod-

uli space

MIIB
d=4 =

SO(6, 6 + n)

SO(6) × SO(6 + n)
× Sl(2, R)U

SO(2)
. (3.62)

Similar to the interpretation of the pure spinor formalism as hyperkähler SU(2) quotient

in the case of d = 6, which we discussed in appendix B.1, we can interpret the purity and

compatibility conditions as leading from the superconformal cone to the moduli space of

supergravity. This is discussed in more detail in appendix B.2.

4 Conclusions

In this paper we showed that SU(2) × SU(2) structures always reduce to either SU(2)

or identity structures and we derived the general form of the moduli space for all SU(2)

backgrounds in four, five and six space-time dimensions.

For compactifications to six dimensions, we derived the geometric subspace of scalar

degrees of freedom to be

Mgeom
d=6 =

SO(3, n + 3)

SO(3)× SO(n + 3)
× R+ , (4.1)
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where n is some integer number and the R+ corresponds to the volume factor. We included

the B field into this moduli space by switching to the framework of generalized geometry.

The dilaton gives an extra degree of freedom that does not mix with the rest of the NS-

sector and we found that the NS moduli space reads

MNS
d=6 =

SO(4, n + 4)

SO(4)× SO(n + 4)
× R+ . (4.2)

We also argued in appendix B.1 that the pure spinor formalism describes the analogue of

a hyperkähler SU(2) quotient in d = 6 and that the corresponding hyperkähler potential

can be naturally expressed in terms of pure spinors.

We further showed that by embedding both pure spinors into representations of the

U-duality group SO(5, 5) we are able to incorporate the RR-scalars into the moduli space.

We showed that in the IIA case no RR-scalars arise and the moduli space is still given

by (4.2), i.e. MIIA
d=6 = MNS

d=6. For type IIB additional RR-scalars exist and they enlarge

the moduli space to

MIIB
d=6 =

SO(5, n + 5)

SO(5)× SO(n + 5)
. (4.3)

We used the same strategy to determine the moduli spaces for SU(2) structure com-

pactifications to d = 4. Additionally, we had to introduce an almost product structure

and generalizations thereof to force the structure group to be SU(2). We then derived the

geometric moduli space of these compactifications to be

Mgeom
d=4 =

SO(3, 3 + n)

SO(3) × SO(3 + n)
× R+ ×

Sl(2, R)

SO(2)
× R+ . (4.4)

Incorporating the B fields of the NS-sector enlarges the moduli space to

MNS
d=4 =

SO(4, n + 4)

SO(4) × SO(n + 4)
× Sl(2, R)S

SO(2)
× Sl(2, R)T

SO(2)
× Sl(2, R)U

SO(2)
. (4.5)

Within the E7(7) covariant formalism of exceptional generalized geometry we derived

the moduli space to be of the form

MIIA/IIB
d=4 =

SO(6, n + 6)

SO(6) × SO(n + 6)
×

Sl(2, R)T/U

SO(2)
, (4.6)

where the extra factor is either Sl(2,R)T

SO(2) or Sl(2,R)U

SO(2) depending on whether we consider

type IIA or type IIB. We also showed that we can interpret the flat superconformal

cone over this space in terms of pure spinors and their embeddings into E7(7) represen-

tations. Furthermore, we explicitly identified how shifts in the fields correspond to shifts

in the moduli space and determined how the RR-scalars are fibered over the rest of the

space. We also briefly commented on the appearance of string/string/string triality [46] in

these compactifications.

In the appendix we performed the analogous analysis for compactifications to d = 5.

We argued that the moduli space is the same for type IIA and IIB due to the absence of

chirality in five dimensions and — after incorporating all scalar degrees of freedom — reads

Md=5 =
SO(5, n + 5)

SO(5)× SO(n + 5)
× R+ . (4.7)
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Note that this work covers all compactifications of type II theories that lead to 16

supercharges in the low energy effective action. The moduli spaces which we derived here

could already have been predicted from the general form of supergravity theories with

16 supercharges. However, here we showed explicitly how these moduli spaces arise in

the compactification procedure. More precisely, we gave an example how the U-duality

covariant formalism can be used to determine the moduli space for backgrounds that break

part of the supersymmetry.

In the derivation we mainly used algebraic properties of the pure spinors but did not

impose explicitly any differential constraint. The reason being that the metric on scalar

field space is determined by the algebraic properties while differential constraints affect the

potential of the effective action. However, by analyzing the light spectrum of the effective

supergravity we argued that we have to project out all SU(2) doublet degrees of freedom in

order to remove the massive gravitino multiplets. Their presence would alter the standard

supergravity with 16 supercharges and in particular change the scalar geometry. Since the

exterior derivative of the pure spinors dΦ is an SU(2) doublet this effectively also constrains

the class of compactification manifolds. In the absence of a warp factor it implies that K3

is the four-dimensional compactification manifold Y4, while for the higher-dimensional Y5,6

a component of the almost product structure appears locally as K3.

For all spaces the number of light modes is determined by the integer n with n = 16

for K3. Generically, this number is related to the global twisting of the bundle of forms

that are in the (2,2) representation of SU(2)× SU(2). All other details of the dimensional

reduction are encoded in the possible gauging of the supergravity action and in the warp

factor. It would be interesting to analyze the possible differential conditions induced by

consistent flux configurations and to classify the gauged supergravities that can arise as

low energy effective actions. A first step in this direction will be presented in [27]. It would

also be interesting to study possible non-perturbative dualities with the heterotic string as

was done, for example, in ref. [23].
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A Spinor conventions and Fierz identities

In this appendix we collect our spinor conventions and Fierz identities used throughout the

paper. For SO(N) the gamma-matrices γm satisfy

{γm, γn} = 2gmn , m, n = 1, . . . , N , (A.1)

where gmn is the SO(N) metric, which can be used to raise and lower the in-

dex of the gamma-matrices. For N even the chirality operator is given by γ0 =

– 39 –



J
H
E
P
0
7
(
2
0
0
9
)
0
8
0

iN/2 1
N !ǫ

m1...mN γm1...mN
, where ǫ specifies the orientation of the manifold. For antisym-

metric products of gamma-matrices we abbreviate

γm1...mk
= γ[m1

. . . γmk ] . (A.2)

The antisymmetric products of two gamma-matrices γmn fulfill the SO(N) commutation

relations and generate the action of SO(N) on spinors η.

As explained e.g. in [47], for any N one can define the charge conjugation matrix, which

maps a spinor η to its charge conjugate ηc. For N = 4k, k ∈ N0, the charge conjugation

matrix commutes with the chirality operator and therefore charge conjugation preserves

the chirality of a spinor. For N = 4k + 2, charge conjugation anti-commutes with the

chirality operator and thus exchanges the chirality of spinors.

With (2.9) and (2.25) we can compute the SO(4) Fierz identities to be

ηαη̄β =
1

2
(P−) β

α −
1

8
i Jmn (γmnP−) β

α , for α, β = 1, . . . , 4 ,

(ηc)αη̄β =
1

8
i Ω̄mn (γmnP−) β

α ,

ηα(η̄c)β =
1

8
i Ωmn (γmnP−) β

α ,

(A.3)

where P± = 1
2 (1± γ0) are the chiral projection operators.

Analogously, the SO(6) Fierz identities for two spinors η1 and η2 can be derived by

using (2.25) together with the definitions (3.6), (3.8) and (3.9) to be

(ηi)α(η̄i)
β =

1

2
(P−) β

α −
1

4
iJ (i)

mn (γmnP−) β
α for i = 1, 2, and α, β = 1, . . . , 8 ,

(ηc
i )α(η̄i)

β =
1

24
i Ω̄(i)

mnp (γmnpP−) β
α ,

(ηi)α(η̄c
i )

β =
1

24
i Ω(i)

mnp (γmnpP+) β
α ,

(η1)α(η̄c
2)

β =
1

2
Km (γmP+) β

α −
1

8
i KmJnp (γmnpP+) β

α ,

(ηc
2)α(η̄1)

β =
1

2
K̄m (γmP−) β

α −
1

8
i K̄mJnp (γmnpP−) β

α ,

(η2)α(η̄1)
β =

1

4
i Ω̄mn (γmnP−) β

α ,

(η1)α(η̄2)
β =

1

4
iΩmn (γmnP−) β

α .

(A.4)

With the help of

(η1)α(η̄1)
β = (η1)α(η̄c

2)
δ(ηc

2)δ(η̄1)
β , (η1)α(η̄c

1)
β = (η1)α(η̄2)

δ(η2)δ(η̄
c
1)

β , (A.5)

etc., we can derive the relations (3.10) and (3.7) for the forms involved.

For SO(N,N) spinors, the gamma-matrices ΓA are defined by

{ΓA,ΓB} = 2IAB , A,B = 1, . . . , 2N , (A.6)
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where I is the SO(N,N) metric. We can also write the gamma-matrices in terms of raising

and lowering operators Γm+ and Γm− such that

{Γm+ ,Γn+} = 0 ,

{Γm− ,Γn−} = 0 ,

{Γm+ ,Γn−} = 2gmn for all m,n = 1, . . . , N ,

(A.7)

where gmn is the SO(N) metric. As for SO(N) gamma-matrices, we abbreviate the anti-

symmetric product of SO(N,N) gamma-matrices by

ΓA1...Ak
= Γ[A1

. . . ΓAk] . (A.8)

The antisymmetric products of two gamma-matrices ΓAB fulfill the SO(N,N) commutation

relations, and generate the action of SO(N,N) on spinors Φ. The chirality operator is given

by Γ0 = 1
(2N)! ǫ

A1...AdΓA1...Ad
, where ǫ is naturally normalized by

ǫm1+m1−...mN +mN− = 1 , (A.9)

if N is even. In this case it defines a canonical choice of positive chirality.

Over a point on a k-dimensional manifold Yk we can define SO(k, k) gamma-matrices

via the operators

Γm+ ≡ dxm∧ , Γm− ≡ ιxm , (A.10)

which act on forms and where ιxm denotes the insertion of the tangent vector xm. They

naturally fulfill the Clifford algebra (A.7) since

[dxm∧ , ιxn ]ωp = δm
nωp , (A.11)

for any p-form ωp. Therefore, we can canonically define an SO(k, k) action on the space of

forms Λ•T ∗Yk. The chirality operator Γ0 acts on a p-form ωp by

Γ0 ωp = (−1)p ωp , (A.12)

hence the Weyl spinor bundle of positive (negative) chirality is given by the bundle of even

(odd) forms. The generators of this SO(k, k) action naturally split into three types accord-

ing to the number of raising and lowering operators. Transformations of the type Γm+n−

preserve the degree of a form and span the algebra of the geometrical group Gl(k, R). The

generators Γm+n+ and Γm−n− correspond to two-forms and bi-vectors. Hence we conclude

so(k, k) = gl(k, R) ⊕ Λ2T ∗Y ⊕ Λ2TY . (A.13)

B Superconformal cones

In this appendix we briefly discuss the existence of various higher-dimensional manifolds

that arise as cones over the moduli spaces which we discussed in the main text. These cones

appear in the associated superconformal supergravity where the extra degrees of freedom

correspond to a superconformal compensating multiplet.
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In theories with eight supercharges (N = 2 in d = 4) the scalars of the hypermulti-

plets span a quaternionic manifold which is the base of a hyperkähler cone (the Swann

bundle) [30]. The construction of the cone is well understood in N = 2 superconformal

supergravity [31].

The NS-sector of type II compactification is shared by a compactification of the het-

erotic string on the same manifold, which therefore only has half the amount of super-

symmetry. As a consequence the moduli spacesMNS
d=6,5,4 given in (2.51), (E.17), (3.36) all

contain the same manifold SO(4, n + 4)/SO(4) × SO(4 + n). The associated hyperkähler

cone of the N = 2 superconformal supergravity is briefly reviewed in appendix B.1.

The superconformal supergravity for sixteen supercharges (N = 4 in d = 4) is less

developed [26]. However, on general grounds one expects the existence of a flat cone over

the N = 4 scalar manifold. This flat cone is briefly discussed in appendix B.2.

B.1 The hyperkähler cone

Let us consider the moduli space of SU(2) structures on four-dimensional manifolds Y4,

which we argued in section 2.4 to look like (2.51). Here, we want to discuss how spe-

cific geometrical constructions over this moduli space arise naturally in the formalism of

pure spinors.

Let us start with four real unconstrained but linearly independent spinors Ψa, a =

1, . . . , 4, living in the space Λeven
finiteT

∗Y4 of signature (4, n + 4). These Ψa can be associated

with the spinors we defined above (2.48) but without imposing any purity and compatibility

conditions on them. They parameterize an open subset in the space
⊕4

i=1 R
4,n+4, which

is just a flat cone over (2.51). The purity and compatibility conditions (2.48) then lead to

the deformation space
SO(4, n + 4)

SO(n + 4)
× R+ , (B.1)

where the R+ factor corresponds to the gauge freedom to choose the parameter c.

In order to construct the physical moduli space, we mod out an additional SO(4)

between the spinors and the overall R+ factor. The generators (Jij)
A

B for this SO(4) are

given by

J AB
ij = 〈Ψi,Γ

ABΨj〉 , (Jij)
A

B = J AC
ij ICB . (B.2)

They span the Lie algebra su1(2)⊕ su2(2), where

su1(2) = span(Jij + ǫijklJkl) , (B.3)

su2(2) = span(Jij − ǫijklJkl) . (B.4)

If we mod out only the SU(2) group generated by su2(2), we end up with the non-Abelian

hyperkähler SU(2) quotient of flat space [41]. This is the hyperkähler cone

SO(4, n + 4)

SU(2)× SO(n + 4)
× R+ (B.5)

of the quaternionic manifold given by (2.51) [30, 41, 42]. By comparing our calculations

with those in [42], one easily sees that (2.40), (2.38) and (2.41) are just the conditions to

– 42 –



J
H
E
P
0
7
(
2
0
0
9
)
0
8
0

set all nine moment maps of the SU(2) generated by su2(2) to zero. The three generators

of su1(2) define the hyperkähler structure of (B.5). The hyperkähler potential of the space
⊕4

i=1 R
4,n+4 we started with is simply

H = 〈Φ̄1,Φ1〉+ 〈Φ̄2,Φ2〉 = J ∧ J + Ω ∧ Ω̄ . (B.6)

By performing the hyperkähler SU(2) quotient, one derives the hyperkähler potential

of (B.5), which is [42]

H = 2
√

〈Φ̄1,Φ1〉〈Φ̄2,Φ2〉 − 〈Φ̄1,Φ2〉〈Φ̄2,Φ1〉 . (B.7)

Here, the second term in the square root is included to make the expression SO(4) invariant.

This hyperkähler potential also determines the metric on the quaternionic manifold (2.51).

B.2 Flat cone of N = 4

For (non-chiral) theories with 16 supercharges in d space-time dimensions the moduli space

is given by M = SO(10−d,nV )
SO(10−d)×SO(nV ) × R

+, where nV counts the number of vector multi-

plets [26]. The gravitational multiplet contains (10−d) vectors while each vector multiplet

contains one vector and (10− d) scalars. M is thus spanned by the nV · (10− d) scalars of

the vector multiplets.

In the superconformal framework one needs to couple (10 − d) additional compensat-

ing vector multiplets with (10 − d)2 additional scalars. Thus, the scalar manifold in the

superconformal supergravity has dimension (nV +(10−d)) ·(10−d). Since theories with 16

supercharges only have the gauge couplings as free parameters, one expects the supercon-

formal theory to have a flat scalar manifold. Or in other words, one expects the existence of

a flat (nV +(10−d)) · (10−d)-dimensional cone overM.28 IndeedM can be viewed as the

choice of a space-like (10−d)-dimensional subspace inside a space of signature (10−d, nV ).

If the positions of the vectors which span this subspace are unconstrained they define a

Gl(10 − d)-bundle over M, which is an open subset in
⊕(10−d)

i=1 R
(10−d,nv).

In the construction of the moduli spaces (2.51), (E.53) and (3.61) we deal each time

with a set of (10 − d) space-like vectors in a (10 − d, nV )-dimensional space as soon as we

project to a theory with sixteen supercharges. These space-like vectors span in each case

the superconformal cone over the moduli space. By imposing purity and compatibility

conditions for these vectors and modding out the rotational symmetry between them, we

project this cone to the underlying moduli space of the corresponding supergravity theory.

Let us discuss this now for each case in more detail.

In appendix B.1 we already explained how the four real vectors Ψa defined above (2.48)

parameterize the flat cone over the first factor of (2.51) and how the purity and compatibil-

ity conditions together with the removal of gauge freedom project this cone to the moduli

space given in (2.51). Below (D.47) we explain the analogous procedure for N = 4 com-

pactifications in the case of d = 4. The corresponding discussion for d = 5 can be found at

the end of appendix E.4, below (E.53).

28We thank Vicente Cortés, Paul Smyth and Antoine Van Proeyen for useful discussions on these issues.
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For a chiral theory with 16 supercharges in 6 space-time dimensions the moduli space

is given byM = SO(5,nT )
SO(5)×SO(nT ) , where nT counts the number of tensor multiplets [33]. The

gravitational multiplet contains 5 anti-self-dual antisymmetric tensors while each tensor

multiplet contains a self-dual antisymmetric tensor and 5 scalars. M is thus spanned by

the 5nT scalars of the tensor multiplets.

In the superconformal framework one needs to couple 5 additional compensating tensor

multiplets with 25 additional scalars. As in the non-chiral theories, the corresponding scalar

manifold should be a flat cone overM. Indeed, the ζI introduced in (2.61) and (2.63) define

a Gl(5) bundle over the moduli space (2.70). This bundle is a 5 · (nT + 5) dimensional

flat cone over (2.70). The condition (2.64) and modding out the rotational symmetry

between the ζI together remove these compensating multiplets and project the moduli

space to (2.70).

C Generalized almost product structures

In section 3.3 we introduce a generalized almost product structure P on six-dimensional

manifolds. In general, a generalized almost product structure may vary. However, in the

following we want to show that for SU(2)×SU(2) structures, deformations of P correspond

to SU(2) × SU(2) doublets, which are projected out together with the massive gravitinos

to achieve a consistent N = 4 theory (see section 3.1). In particular, we show the same

result also for a conventional almost product structure P , which plays a similar role in

section 3.2.

Let us start with some conventional almost product structure P and afterwards gener-

alize the result to a generalized almost product structure P. An almost product structure

P whose eigenspace with eigenvalue +1 has dimension p can be described by some p-form

α which is locally decomposable into one-forms. In our case we have to deal with some

nowhere-vanishing two-form α which is locally decomposable, i.e. whose square is zero

α ∧ α = 0 . (C.1)

The splitting of the tangent space which defines P is then obtained by

TY = T2Y ⊕ T4Y ≡ A(TY )⊕ kernel(A) , (C.2)

where A = 1
2(1+P ) is understood as the linear map that is related to α by some arbitrary

but fixed metric.29

We can now try to understand the moduli space of α. Since α must stay locally

decomposable under all valid deformations, α can only vary by some two-form that has

one leg on each eigenspace of P , i.e. by some two-form in T ∗
2 Y ∧T ∗

4 Y . For SU(2) structure

compactifications T ∗
4 Y consists of SU(2) doublets only, while T ∗

2 Y consists of SU(2) singlets.

Hence, these two-forms are doublets under the SU(2) structure group. Since all of these

doublets are projected out together with the massive gravitino multiplets, we see that there

29We can always use the metric that corresponds to the actual point in moduli space. Therefore, the use

of a metric in this argument about allowed deformations does not introduce any further assumption.
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are no valid global deformations of the almost product structure. This shows that for any

SU(2) structure P is fixed.

Now let us consider some generalized almost product structure P. We consider the

standard form for P that is30

P0 =

(

P 0

0 P t

)

, (C.3)

where P is some almost product structure on TY whose eigenspace with eigenvalue −1

has dimension four. We want to analyze its orbit under SO(6, 6). For this we use the

decomposition of the algebra of SO(6, 6) given in (A.13). By Gl(6) transformations we only

transform P , which is already captured by the fact that we chose P to be a general almost

product structure. We showed above that P can only be deformed by SU(2) doublets.

The remaining SO(6, 6) transformation of P are two-form and bi-vector shifts. Under a

two-form shift, P transforms as
(

P 0

0 P t

)

→
(

1 0

B 1

)

·
(

P 0

0 P t

)

·
(

1 0

−B 1

)

=

(

P 0

(B · P − P t · B) P t

)

. (C.4)

If B has both legs on T ∗
4 Y or both on T ∗

2 Y , this transformation leaves P just invariant.

The same result holds for bi-vector shifts. Therefore, the two-form and bi-vector shifts

that change P have one leg on each eigenspace of P . However, these transformations are

SU(2) doublets. They are projected out together with the massive gravitino multiplets.

Finally, let us remark that the transformations of SO(6, 6) that deform P are those

elements that are not in SO(2, 2) × SO(4, 4). Thus, projecting out the massive gravitinos

corresponds to the projection of SO(6, 6) to SO(2, 2) × SO(4, 4).

D Calculations in the E7(7) covariant formalism

The U-duality group is the symmetry group of type II supergravity, which is broken to a

discrete subgroup by non-perturbative effects [43]. It naturally incorporates the T-duality

group and the S-duality group which form the symmetry group of the NS sector. The E7(7)

covariant formalism introduced in [18] is therefore a natural language to discuss the moduli

space of type II theories in d = 4, and incorporates the pure spinor approach of generalized

geometry [19, 21].

In this appendix we present the technical computations which we omitted in section 3.5

and 3.6.

D.1 Facts about E7(7)

The goal of this appendix is to show that both (3.46) and (3.47) describe SO(6, 6)×Sl(2, R)

subgroups of E7(7) and to determine the decomposition of its representations in terms of

the projected geometrical group GNS = Sl(2, R)S × Sl(2, R)T × Sl(2, R)U × SO(4, 4), i.e.

the S-duality group times the projected T-duality group.

30Note that we can always diagonalize P such that it reduces to some conventional almost product

structure. Since the number of deformations is independent of the basis, this argument generalizes to

arbitrary P .
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Let us first assemble some properties of E7(7) which we need later on. A more complete

list of facts can be found in [21, 45]. The fundamental representation of E7(7) decomposes

under GTS = Sl(2, R)S × SO(6, 6) into the (2,12) and the (1,32) representation (see

eq. (3.37)). Thus its elements can be written as

λ = (λA
i , λ±) , i = 1, 2, A = 1, . . . , 12 , (D.1)

where λA
i is an Sl(2, R)S doublet of SO(6, 6) vectors. λ± denotes a chiral spinor of SO(6, 6)

where here and in the following, the upper (lower) chirality sign is valid for type IIA (IIB).

The adjoint of E7(7) decomposes under Sl(2, R)S×SO(6, 6) into the adjoint representations

of Sl(2, R)S and SO(6, 6) and into the (2, 3̄2) representation (cf. (3.38)). Therefore its

elements are of the form

M = (m̂i
j,m

A
B, m̃i∓) , (D.2)

where m̂i
j is in the adjoint of Sl(2, R)S , mA

B is in the adjoint of SO(6, 6) and m̃i∓ is a

doublet of SO(6, 6) spinors. The transformation law of λ reads

δMλ =

(

m̂i
jλ

jA + mA
BλiB + 〈m̃i∓,ΓAλ±〉 , 1

4
mABΓABλ± + ǫijλ

iAIABΓBm̃j∓

)

. (D.3)

The transformation law of M is given by the commutator

δMN = [M,N ] =

(

[m̂, n̂]ij + ǫjk

(

〈m̃i∓, ñk∓〉 − 〈ñi∓, m̃k∓〉
)

,

[m,n]AB + ǫij〈m̃i∓,ΓA
Bñj∓〉 ,

m̂i
j ñ

j∓ − n̂i
jm̃

j∓ +
1

4
mABΓABñi∓ − 1

4
nABΓABm̃i∓

)

.

(D.4)

In the following we will restrict ourself to type IIA. For the analogous analysis in type

IIB one has only to exchange some chiralities. Specifically one has to change

Φ+ ←→ Φ− ,

C ∈ ΛoddT ∗Y6 −→ C ∈ ΛevenT ∗Y6 ,

Sl(2, R)U ←→ Sl(2, R)T ,

λ+ −→ λ− ,

m̃i− −→ m̃i+ ,

µi− −→ µi+ .

(D.5)

Now consider the decomposition of the adjoint representation of SO(6, 6) under the

breaking SO(6, 6) → SO(4, 4) × SO(2, 2). In terms of the Lie algebras, we can further

decompose so(2, 2) into sl(2, R)T and sl(2, R)U , according to (3.34). The two sub-algebras

in terms of their generators are given by

sl(2, R)T = span
(

Γ1+2+,Γ1−2−,
(

Γ1+1− + Γ2+2−
))

(D.6)

and

sl(2, R)U = span
(

Γ1+2−,Γ2+1−,
(

Γ1+1− − Γ2+2−
))

. (D.7)
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Here, Γi±j± denotes the anti-symmetric product of two gamma-matrices that fulfill the

Clifford algebra (A.7) and which can be associated with one-forms and vectors as written

in (A.10). The above decomposition can be further understood by consideration of (A.13).

The sl(2, R) sub-algebra of gl(2, R) can be associated with sl(2, R)U , while the generator

of the global factor together with the two-form and bi-vector shifts form the sl(2, R)T . Due

to the splitting (3.34) we can consider the decomposition of the representations under the

breaking SO(6, 6)→ SO(4, 4) × Sl(2, R)T × Sl(2, R)U . The vector representation splits as

12→ (1,2,2) ⊕ (8v ,1,1) , (D.8)

while the spinor representation decomposes as

32→ (8s,2,1) ⊕ (8c,1,2) . (D.9)

The adjoint decomposes as

66→ (28,1,1)⊕ (1,3,1) ⊕ (1,1,3) ⊕ (8v ,2,2) . (D.10)

Now we have everything to show that (3.46) and (3.47) both describe SO(6, 6)×Sl(2, R)

subgroups of E7(7). Let us start with the type IIA case, and consider the sub-algebra (3.46)

of the adjoint representation (3.41) of E7(7). Analogously to (3.46), we write an element in

gIIA as

M =
(

m̂i
j ,m

p
q,m

a
b, m̃

i−
)

, (D.11)

where we have decomposed the mA
B of eq. (D.2) into the SO(2, 2) generators mp

q, p, q =

1, . . . , 4 and the SO(4, 4) generators ma
b, a, b = 1, . . . , 8. Finally, we note that m̃i− ∈

ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6.

We can determine the commutator of two elements in gIIA by restricting (D.4) to

elements in gIIA. We obtain

[M,N ] =
(

[m̂, n̂]ij + ǫjk

(

〈m̃i−, ñk−〉+ 〈m̃k−, ñi−〉
)

, [m,n]pq + ǫij〈m̃i−,Γp
qñ

j−〉 ,

[m,n]ab + ǫij〈m̃i−,Γa
bñ

j−〉 , m̂i
jñ

j− − n̂i
jm̃

j− (D.12)

+
1

4
mabΓ

abñi− − 1

4
nabΓ

abm̃i− +
1

4
mpqΓ

pqñi− − 1

4
npqΓ

pqm̃i−
)

.

As explained above, we can further decompose the above expression due to (3.34). However,

because m̃i− and ñi− live in ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6, their components on T2Y6 ⊕ T ∗
2 Y6 are

of odd chirality. Hence, they are singlets under Sl(2, R)T and doublets under Sl(2, R)U , as

can be seen from (D.6) and (D.7). From (D.12) we then obtain that elements in Sl(2, R)T
commute with all other generators of GIIA, i.e. the group GIIA is a direct product with

one factor being Sl(2, R)T . Furthermore, from (D.12) we see that m̃i− is in the (8,2,2) of

SO(4, 4)×Sl(2, R)S ×Sl(2, R)U , and from (D.10) we see that together with the remaining

generators of GIIA they indeed span the algebra of SO(6, 6). Thus we conclude that GIIA ≡
SO(6, 6) × Sl(2, R)T .

For type IIB, the arguments are very similar, apart from the fact that in (D.11) the

negative chirality spinor m̃i− is replaced by the positive chirality spinor m̃i+ which lives in
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ΛevenT ∗
2 Y6 ∧ΛevenT ∗

4 Y6. Therefore, instead of Sl(2, R)T the factor Sl(2, R)U drops out and

we obtain GIIB ≡ SO(6, 6) × Sl(2, R)U .

Thus, we identified three subgroups of E7(7). First there is GTS = Sl(2, R)S ×SO(6, 6)

which arises by turning off all RR-degrees of freedom. The other two subgroups arise in

N = 4 compactifications after projecting out all SU(2)×SU(2) doublets or equivalently all

massive gravitino multiplets. They are GIIA = Sl(2, R)T ×SO(6, 6) and GIIB = Sl(2, R)U ×
SO(6, 6). The common subgroup of all three groups is GNS = Sl(2, R)S × Sl(2, R)T ×
Sl(2, R)U × SO(4, 4).

It is instructive to decompose the E7(7) representations with respect to the breaking

E7(7) → GTS → GNS. Using (3.37) together with (D.8) and (D.9), the fundamental

representation decomposes into

56→(2,12) + (1,32)

→(2,2,2,1) ⊕ (2,1,1,8v)⊕ (1,2,1,8s)⊕ (1,1,2,8c) ,
(D.13)

and similarly using (D.10) and (D.9) the adjoint (3.38) breaks into

133→(3,1) + (1,66) + (2, 3̄2)

→(3,1,1,1) ⊕ (1,3,1,1) ⊕ (1,1,3,1) ⊕ (1,1,1,28)

⊕ (1,2,2,8v)⊕ (2,1,2,8s)⊕ (2,2,1,8c) .

(D.14)

This shows that both (D.13) and (D.14) are invariant under the joint action of SO(4, 4) trial-

ity together with the corresponding STU triality action interchanging the three Sl(2, R) fac-

tors.

The part of the triality action interchanging T and U just corresponds to a general-

ization of T-duality between type IIA and type IIB. However, the interchange of S with

T or U seems to lead to some theory where the RR-sector is absent but no SU(2)× SU(2)

doublets have been projected out. For type II compactifications on K3 × T 2, this corre-

sponds to the non-perturbative duality with the heterotic string compactified on T 6. In

this case, the triality action is known as string/string/string triality [46]. The heterotic

duals of some specific SU(2) structure compactifications have been analyzed in [23].

D.2 Calculating stabilizers and orbits

Let us now compute the stabilizer of the pure SO(6, 6) spinors embedded in the fundamental

and adjoint representation of E7(7). We consider type IIA compactifications in some detail

and only give the results for type IIB which can easily be obtained by some chirality

changes, as explained in appendix D.1. Furthermore we use the reduction E7(7) → GIIA =

Sl(2, R)T×SO(6, 6) and compute the intersection of the stabilizer with this subgroup. Note

that we only have to consider the real or the imaginary part of some pure SO(6, 6) spinor

because they are related via the Hitchin functional [13].

D.2.1 Embedding into the fundamental

Let us start with the pure spinor Φ+ of positive chirality. According to (3.37), we can

embed its real part Re(Φ+) into the fundamental representation as done in (3.48). We
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can compute the stabilizer using (D.3) and the splitting (3.46). We know that ReΦ+

is a singlet under Sl(2, R)S and, since Re Φ+ ∈ ΛevenT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6, also a singlet

under Sl(2, R)U . Therefore both groups are in the stabilizer. Due to the same reason,

Re Φ+ transforms under Sl(2, R)T non-trivially such that no element in this group stabilizes

Re Φ+. Furthermore, Φ1 defined in (3.30) is pure and is therefore stabilized by SU(2, 2)Φ1 ≡
SO(2, 4) ⊂ SO(4, 4). Therefore, Re Φ+ is also stabilized by this subgroup.

It remains to understand which elements m̃i− ∈ ΛoddT ∗
2 Y6∧ΛevenT ∗

4 Y6 stabilize λ. We

use the parameterization (3.30) and (3.32). Thus, ReΦ+ can be expressed as31

Re Φ+ = 1 ∧ ReΦ1 − ReK ∧ Im K ∧ Im Φ1 , (D.15)

where K is the holomorphic one-form on ΛoddT ∗
2 Y6 defined in (3.8) and related to the pure

spinors in (3.32). The transformation parameters can be analogously written as

m̃i− = Re K ∧ αi1 + ImK ∧ αi2, i = 1, 2 , (D.16)

where αij are spinors in ΛevenT ∗
4 Y6

From (D.3) we now see that those m̃i− are in the stabilizer which fulfill

〈m̃i−,ΓA ReΦ+〉 = 0 for all A = 1, . . . , 12 . (D.17)

These equations are only non-trivial for the gamma-matrices that act on ΛoddT ∗
2 Y6. Thus,

we arrive at

〈αij ,Re Φ1〉 = 〈αij , Im Φ1〉 = 0 . (D.18)

This just eliminates all SU(2, 2)Φ1 singlets. Therefore, the elements in ΛoddT ∗
2 Y6 ∧

ΛevenT ∗
4 Y6 which are in the stabilizer just form the representation (2,2,6) of the group

Sl(2, R)S×Sl(2, R)U×SU(2, 2)Φ1 . This combines with the adjoint of Sl(2, R)S×Sl(2, R)U×
SU(2, 2)Φ1 into the adjoint of SO(4, 6). There is one further SO(2) factor in the sta-

bilizer which corresponds to a simultaneous rotation of the doublets (ReΦ1, Im Φ1) and

(1,Re K ∧ ImK) such that the overall phase factor of Φ+ stays constant. Therefore, the

whole stabilizer is SO(4, 6) × SO(2). This can also be understood from the fact that

Re Φ+ transforms non-trivially under Sl(2, R)T and therefore λ must be in the (2,12) of

GIIA. This just gives a doublet of space-like SO(6, 6) spinors, which is indeed stabilized by

SO(4, 6) × SO(2).

In order to obtain the physical parameter space we need to mod out by one further

gauge degree of freedom which corresponds to the phase of Φ+, as explained in section 3.6.

We thus finally get

Mλ =
SO(6, 6)

SO(2)× SO(4, 6)
× Sl(2, R)T

SO(2)
. (D.19)

The first factor just describes a space-like two-dimensional subspace in a space of signa-

ture (6, 6).

Before we move on to the embedding of the other spinor, we want to know what is

the most general form for the embedding of λ given in (3.48) if it is deformed by some

31For simplicity we again switched off the B-field which, however, does not change the computation.
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general GIIA deformation. The only deformations that are not already caught by the

Ansatz in (3.48) are the elements in the adjoint of GIIA that are represented by ΛoddT ∗
2 Y6∧

ΛevenT ∗
4 Y6. We just showed that the part of ΛoddT ∗

2 Y6 ∧ΛevenT ∗
4 Y6 which is in the (2,2,6)

representation of the group Sl(2, R)S × Sl(2, R)U × SU(2, 2)Φ1 stabilizes λ, and therefore

cannot deform it. Thus, only the deformations in the (2,2,1) representation, i.e. SU(2, 2)Φ1

singlets, may deform λ. These are spinors of the form

mi− = (ci2+ Re K − ci1+ Im K) ∧ Re Φ1 − (ci1− Re K + ci2− Im K) ∧ Im Φ1 , (D.20)

where the cia, a = 1+, 1−, 2+, 2−, are real. The action of such elements m̃i− in the adjoint

on λ reads

δm̃i−λ =
(

cia, 0
)

, (D.21)

where we used (3.48), (D.15) and (D.3). Note that cia is an SO(2, 2) vector which naturally

embeds into an SO(6, 6) vector.

By exponentiation of the mi− in (D.20) the most general form of the embedding (3.48)

can be obtained. These additional degrees of freedom correspond to the RR-fields and to

gauge degrees of freedom. We discuss their physical significance in appendix D.2.3 when

we consider both the embeddings of Φ+ and Φ−.

D.2.2 Embedding into the adjoint

Let us now come to the embedding of the other pure spinor Φ−. Due to its negative

chirality Φ− cannot be embedded into the fundamental representation of E7(7) but only

into its adjoint via µ1 = (0, 0,Re(uiΦ−)) as we argued in (3.52).32 Now let us analyze

the intersection of its stabilizer with GIIA. Since E7(7) acts on µ1 via the Lie bracket,

we can use (D.12) to determine its stabilizer. With help of (3.30) and (3.32) we can

write it as µ1 = (0, 0,Re(uiK ∧ Φ2)). One can easily see that Sl(2, R)S acts freely on

µ1 since it acts freely on ui. Since Re Φ−, ImΦ− ∈ Λodd
2 T ∗Y6 ∧ Λeven

4 T ∗Y6, we also see

that Sl(2, R)U acts freely on µ1. However, there are two additional phase rotations inside

Sl(2, R)S ×Sl(2, R)U ×SO(4, 4) that leave µ1 invariant. The first rotates ui and the spinor

component K ∈ Λodd
2 T ∗Y6 of Φ− with opposite phases. We call the generator of this

transformation R(+1,−1,0). The second generator, R(+1,+1,−2), rotates ui and K by the

same phase and Φ2 oppositely.

Sl(2, R)T acts trivially and therefore is part of the stabilizer of µ1. Since Φ2 is pure,

we know that it is also stabilized by an SU(2, 2)Φ2 ⊂ SO(4, 4) subgroup, and so is Φ−. It

remains to determine the elements m̃i− of ΛoddT ∗
2 Y6 ∧ΛevenT ∗

4 Y6 which leave µ1 invariant.

From (D.12) we see that this leads to the following equations

〈m̃i−,Re
(

ujΦ−
)

〉+ 〈m̃j−,Re
(

uiΦ−
)

〉 = 0 ,

ǫij〈m̃i−,Γp
q Re

(

ujΦ−
)

〉 = 0 ,

ǫij〈m̃i−,Γa
b Re

(

ujΦ−
)

〉 = 0 .

(D.22)

32Note that we distinguish in our notation formally between M and µ1 which are both elements in the

adjoint of E7(7). The former one corresponds to an unspecified generator of the group action. The latter

one parameterizes the SU(2) × SU(2) structure and is defined by the embedding of the pure spinor Φ−.
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For convenience, we choose u1 = 1 and u2 = − i and insert (D.16) into the above equations.

Using Re Φ− = ReK ∧ReΦ2 − Im K ∧ Im Φ2 and Im Φ− = ReK ∧ Im Φ2 + Im K ∧Re Φ2,

the first equation in (D.22) implies

〈α11, Im Φ2〉 = −〈α12,Re Φ2〉 ,
〈α22, Im Φ2〉 = 〈α21,Re Φ2〉 ,

〈α11,Re Φ2〉 − 〈α12, Im Φ2〉 = 〈α22,Re Φ2〉+ 〈α21, Im Φ2〉 .

(D.23)

Similarly, the second equation in (D.22) leads to

〈α11, Im Φ2〉 = 〈α21,Re Φ2〉 ,
〈α22, Im Φ2〉 = −〈α12,Re Φ2〉 ,

〈α11,Re Φ2〉+ 〈α12, Im Φ2〉 = 〈α22,Re Φ2〉 − 〈α21, Im Φ2〉 .

(D.24)

Together, they give five relations between the eight SU(2, 2)Φ2 singlets, which read

〈α11, Im Φ2〉 = −〈α12,Re Φ2〉 = 〈α21,Re Φ2〉 = 〈α22, Im Φ2〉 ,
〈α11,Re Φ2〉 = 〈α22,Re Φ2〉 ,
〈α12, Im Φ2〉 = −〈α21, Im Φ2〉 .

(D.25)

This means that only three of the SU(2, 2)Φ2 singlets are elements in the stabilizer. It

remains to analyze the third equation in (D.22). By the same method, we can write it as

〈α11,Γa
b Re Φ2〉 − 〈α12,Γa

b Im Φ2〉+ 〈α21,Γa
b Im Φ2〉+ 〈α22,Γa

b ReΦ2〉 = 0 , (D.26)

where a and b are arbitrary SO(4, 4) indices. For the singlets these equations im-

ply additionally

〈α11,Re Φ2〉 − 〈α12, Im Φ2〉+ 〈α21, Im Φ2〉+ 〈α22,ReΦ2〉 = 0 . (D.27)

Together with the third equation in (D.23) this implies

〈α11,ReΦ2〉 = 〈α12, Im Φ2〉 , (D.28)

which reduces the number of singlets to two.

In eq. (D.26) we can choose Γa
b ReΦ2 to be in the 6 of SU(2, 2)Φ2 and Γa

b Im Φ2 = 0

or the other way around. This implies

α ≡ Proj6 α11 = −Proj6 α22 , β ≡ Proj6 α12 = Proj6 α21 , (D.29)

where Proj6 is the projection onto the 6 representations of SU(2, 2)Φ2 . This gives twelve

conditions on the remaining 24 degrees of freedom and eliminates two of the four 6 repre-

sentations of SU(2, 2)Φ2 . Therefore, we can parameterize the mi− in the stabilizer by

m̃i−
6 =

(

ReK ∧ α + ImK ∧ β

ReK ∧ β − Im K ∧ α

)

, (D.30)
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and

m̃i−
1 =

(

Re K ∧ (aRe Φ2 + b Im Φ2)− Im K ∧ (bRe Φ2 − a Im Φ2)

Re K ∧ (bRe Φ2 − a Im Φ2) + Im K ∧ (aRe Φ2 + b Im Φ2)

)

, (D.31)

where a, b ∈ R. We can reparameterize (D.30) and (D.31) in a more elegant way by writing

m̃i−
6 = Re(uiK̄ ∧ αC) , m̃i−

1 = Re(cuiK ∧ Φ̄2) , (D.32)

where αC is in the complexified 6 representation of SU(2, 2)Φ2 and c ∈ C. One can check

that the algebra of the transformations in the 6 representation closes if one includes the

SO(2) ⊂ Sl(2, R)S × Sl(2, R)U factor R(+1,−1,0) that is part of the stabilizer as well as the

SU(2, 2)Φ2 ≡ SO(2, 4) ⊂ SO(4, 4). Together they form the group SO(2, 6). The algebra of

the SU(2, 2)Φ2 singlet transformations m̃i−
1 does close if one includes the transformation

R(+1,+1,−2) we introduced above. Together, they generate some SO(3) group and therefore

the complete stabilizer is SO(3) × SO(2, 6).

However, there are still some gauge transformations of µ1 that do not have any physical

meaning and must be removed. In section 3.6 we explain that µ1 is part of some highest

weight SU(2) embedding µa with an SU(2) gauge freedom which is generated by the µa

themselves. The generator R(+1,+1,+2) coincides with µ3, which is defined in (3.54), and

rotates µ1 and µ2 defined in (3.53) into each other. Furthermore, µ1 and µ2 are the other

two SU(2) generators m̃i−
1 that correspond to gauge freedom. These three generators form

the algebra of su(2), and furthermore commute with the stabilizer su(2) = so(3) on the

singlets which we discussed above. Therefore, all of them together form the algebra of

so(4) = su(2)⊕ su(2), explicitly spanned by R(+1,+1,+2), R(+1,+1,−2) and

m̃i−
1 =

(

ReK ∧ (aRe Φ2 + d Im Φ2)− Im K ∧ (bRe Φ2 + c Im Φ2)

ReK ∧ (bRe Φ2 + c Im Φ2) + Im K ∧ (aRe Φ2 + d Im Φ2)

)

= Re(c1u
iK ∧ Φ̄2 + c2u

iK ∧ Φ2) .

(D.33)

Here, a, b, c and d are real parameters that can be rewritten in terms of the complex

parameters c1 and c2. The generators corresponding to c1 are the elements in the stabilizer

we already had in (D.32).

As explained in section 3.6, the stabilizer of µ1 coincides with the stabilizer of the

other two µa. Therefore, after removing pure gauge degrees of freedoms, we end up with

the configuration space

Mµa =
SO(6, 6)

SO(4) × SO(2, 6)
. (D.34)

We see that µ1 defines up to gauge equivalence a space-like four-dimensional subspace

in a space of signature (6, 6). This can be understood as follows. Under the breaking

SO(6, 6) → Sl(2, R)S × Sl(2, R)U × SO(4, 4), the vector representation of SO(6, 6) decom-

poses analogously to (D.8) as 12 → (2,2,1) ⊕ (1,1,8s), where we used the triality of

SO(4, 4). Under the same decomposition, µ sits in the (2,2,8s) representation which is

just the tensor product (2,2,1)⊗ (1,1,8s). The first factor in this tensor product is given
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by uiK while the second is given by Φ2. Both define complex SO(6, 6) vectors which are

orthogonal to each other. From the normalization in (3.10) and (3.51) we see that33

ǫij〈uiK, ūjK̄〉2 = 2 . (D.35)

Thus, we can conclude that the real and imaginary part of uiK have positive norm. The

same holds for the real and imaginary part of Φ2. Hence, together they span the space-like

four-plane defined by µ (or equivalently, by the µa) in the space of signature (6, 6). Note

that the SO(4) transformations R(+1,+1,+2), R(+1,+1,−2) and the ones given in (D.33) are

really those that rotate the space-like four-plane non-trivially into itself.

Now let us determine the most general form of the embedding (3.52). For this, we

consider the possible deformations of µ1 under GIIA = Sl(2, R)T×SO(6, 6) transformations.

The transformations in GNS = Sl(2, R)S × Sl(2, R)T × Sl(2, R)U × SO(4, 4) act only on

ui and Φ−. Thus, they do not change the embedding (3.52). It remains to understand

the transformation properties under SO(6, 6) deformations ñi− which live in ΛoddT ∗
2 Y6 ∧

ΛevenT ∗
4 Y6. From (D.30) and (D.33) we know the ñi− that stabilize µ. This means that

those which deform µ1 non-trivially are of the form

ñi−
1 =

(

Re K ∧ (aRe Φ2 + d Im Φ2) + ImK ∧ (bRe Φ2 + c Im Φ2)

Re K ∧ (bRe Φ2 + c Im Φ2)− ImK ∧ (aRe Φ2 + d Im Φ2)

)

= Re(d1u
iK̄ ∧ Φ̄2 + d2u

iK̄ ∧ Φ2)

(D.36)

for the SU(2, 2)Φ2 singlets, and

ñi−
6 =

(

−Re K ∧ α + Im K ∧ β

−Re K ∧ β − ImK ∧ α

)

= Re(uiK ∧ βC) (D.37)

for the 6 representation of SU(2, 2)Φ2 . The coefficients a, b, c and d again are real and can

be expressed in the complex numbers d1 and d2. Analogously, α and β are real SO(4, 4)

spinors in the 6 representation of SU(2, 2), while βC is in the complexified 6 representation.

In order to compute the transformations of µ, we decompose analogously to (D.11)

δµ =
(

(δµ̂)ij , (δµ)pq, (δµ)ab, (δµ)i−
)

. (D.38)

Using (D.12) we find

(δ6µ)ab = 2(〈α,Γa
b ReΦ2〉+ 〈β,Γa

b ImΦ2〉) = 2Re(〈βC,Γa
bΦ̄2〉) (D.39)

as the only non-vanishing deformation for the deformations in the 6 representation. For

the deformations in the 1 representation the variation in the adjoint of Sl(2, R) is

(δ1µ̂)ij = 2

(

a− c b + d

b + d c− a

)

= 2 Im(d1ǫjku
iuk) . (D.40)

33Here, 〈·, ·〉2 is the usual spinor product on Λ•T ∗
2 Y6 that is related to the Mukai pairing by a two-

dimensional volume factor.
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The deformations (δ1µ)pq that take values in the adjoint of SO(2, 2) do not fill it out

completely but only the sl(2, R)U part. They read

(δ1µ)pq =











a + c d− b 0 0

d− b −a− c 0 0

0 0 −a− c b− d

0 0 b− d a + c











=

(

Im(d2ǫjkū
iūk) 0

0 − Im(d2ǫjkū
iūk)

)

, (D.41)

with all other components being zero.

D.2.3 Putting the parts together

So far we just embedded the two pure SO(6, 6) spinors into appropriate E7(7) representa-

tions. In this section we finally discuss their purity and compatibility conditions as well as

the moduli space spanned by both objects.

As we already mentioned in section 3.6 a pure (complex) SO(6, 6) spinor Φ is equivalent

to a stable (real) SO(6, 6) spinor χ = Re Φ. Stability means in this context that such a

spinor χ transforms in an open orbit under the action of SO(6, 6). Stability is measured

by the quartic SO(6, 6) invariant [6, 13]

q(χ) = −1

4
χ̄ΓABχ χ̄ΓABχ =

1

4
tr(J 2

Φ) . (D.42)

For χ to be stable we need q(χ) < 0. Furthermore, q measures the normalization of

the generalized almost complex structure JΦ. Thus, JΦ can be properly normalized if

q(Re Φ) < 0. The quantity (D.42) is naturally embedded into the quartic invariants of the

E7(7) representations [21]

q(λ) =ǫijǫklIABICDλiAλkBλjCλlD − ǫijλ
iAλjBλ̄+ΓABλ+ − 1

24
λ̄+ΓABλ+λ̄+ΓABλ+

(D.43)

and

q(m) = tr m4 + (tr m2)2 + (det m̂)2 + tr m2ǫij
¯̃mi−m̃j− + (det m̂)2ǫij

¯̃mi−m̃j−

+ (ǫij
¯̃mi−m̃j−)2 + ǫijǫkl

¯̃mi−ΓABm̃k− ¯̃mj−ΓABm̃l− .
(D.44)

We see that in both expressions the last term just gives the Hitchin functional while the

other terms vanish for the embeddings (3.48) and (3.52). Hence, both quartic invariants just

generalize the corresponding Hitchin functionals and we impose the stability condition via

q(λ) < 0 , q(µ1) < 0 . (D.45)

Now we come to the issue of compatibility. By studying (D.3) one can check that (3.59)

is appropriate to reproduce the SO(6, 6) compatibility conditions given in (3.17) for the

embeddings (3.48) and (3.52). Furthermore, in principle both embeddings (3.48) and (3.52)

could each be shifted by independent E7(7) transformations. Equation (3.59) ensures that

the additional degrees of freedom which arise in the U-duality group are the same for

both embeddings.
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Finally, we want to determine the parameter space of compatible µ and λ. To do

so, we first determine the intersection of the two stabilizers, and afterwards eliminate all

gauge redundancies. Let us distinguish for the following analysis SU(2) × SU(2) singlets

from the (2,2) representation of SU(2)×SU(2). The former one is spanned by the real and

imaginary parts of Φ1 and Φ2. The latter one is just the intersection of the 6 representations

of SU(2, 2)Φ1 and SU(2, 2)Φ2 .

Let us start with the (2,2) representation. The part of the common stabilizer that is

in so(4, 4) is just su(2) × su(2) ≡ so(4), as we know from the theory of pure compatible

spinors. It just describes rotations in the space orthogonal to the real and imaginary parts

of the two pure spinors and therefore is in the (2,2) representation. Furthermore, there

are additional elements in the (2,2) representation of the stabilizer which are of the form

m̃i−. The m̃i− in (D.30) split into those that are in the (2,2) representation and those

which are SU(2) × SU(2) singlets. Eq. (D.18) eliminates exactly the singlets. The algebra

consisting of the m̃i− in the (2,2) representation and the SU(2)× SU(2) generators closes

if one includes the SO(2) factor R(+1,−1,0). Analogously to the analysis for the stabilizer

of µ, these transformations form the group SO(6).

Now let us consider the SU(2)×SU(2) singlets. These singlets are either SU(2, 2)Φ1 or

SU(2, 2)Φ2 singlets. The singlets of SU(2, 2)Φ1 are removed from the stabilizer by (D.18).

The SU(2, 2)Φ2 singlets all stabilize λ. Hence, the singlet component of the stabilizer is

the same as the one for µ. In section D.2.2, we showed that it forms the group SO(3).

Again there are further gauge redundancies which have to be projected out. Part of them

we already discussed in the previous two subsections. Furthermore, the gauge transforma-

tion that rotate the doublets (Re Φ1, Im Φ1) and (Re Φ2, Im Φ2) are part of a bigger group

that rotates the vector (ReΦ1, Im Φ1,Re Φ2, Im Φ2). In addition we have to mod out the

gauge transformations generated by m̃i−. On top of the transformations in (D.33), this

also includes

m̃i−
1 =

(

ReK ∧ (ã ReΦ1 + d̃ Im Φ1)− Im K ∧ (b̃Re Φ1 + c̃ Im Φ1)

ReK ∧ (b̃ ReΦ1 + c̃ Im Φ1) + Im K ∧ (ãRe Φ1 + d̃ Im Φ1)

)

= Re(c3u
iK ∧ Φ̄1 + c4u

iK ∧ Φ1) .

(D.46)

Together with the SO(4) rotations among ReΦ1, Im Φ1, Re Φ2 and Im Φ2 and the SO(2)

rotation of ui, this forms an SO(6) group which consists of elements that leave λ and µ

invariant up to gauge degrees of freedom.

So far we discussed only the transformations in SO(6, 6). The transformations in

Sl(2, R)T stabilize µ, but only an SO(2) subgroup leaves λ invariant up to gaugings. There-

fore, we end up with the parameter space

Mλ,µ =
SO(6, 6)

SO(6)× SO(6)
× Sl(2, R)T

SO(2)
. (D.47)

The first factor describes the choice of a space-like six-dimensional subspace in a space

of signature (6, 6). Analogously to section D.2.2, we can interpret this six-dimensional

subspace as being spanned by the real and imaginary parts of uiK, Φ1 and Φ2. In fact, the

E7(7) covariant formalism describes the procedure to descend from the flat superconformal
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cone over (D.47) to the moduli space itself. First, one assumes that the real and imaginary

part of uiK, Φ1 and Φ2, which are space-like SO(6, 6) vectors, do not feel any constraints on

their position in the vector space of signature (6, 6) apart from being space-like and linearly

independent. This defines a Gl(6) bundle over (D.47), which is an open set in
⊕6

i=1 R
(6,6).

The purity conditions (D.45) and the compatibility condition (3.59) together with gauge

fixing then project this flat cone to (D.47). This cone also survives the transition to a

global moduli space by performing the Kaluza-Klein truncation, as done in section 3.6,

where it becomes the Gl(6) bundle over the first factor in (3.61) and is an open set in
⊕6

i=1 R
(6,6+n).

At the end of this section, we want to identify explicitly the scalar degrees of freedom

coming from the RR-sector. For this we have to distinguish the deformations that are

SU(2)× SU(2) singlets from those that are in the (2,2) representation. The deformations

in the (2,2) representation are in the 6 representation of both SU(2, 2)Φ1 and SU(2, 2)Φ2 .

Therefore, they are the deformations which are displayed in (D.37) but are not of the

form (D.20). This gives eight degrees of freedom, corresponding to all RR-form fields that

are in the (2,2) representation of SU(2) × SU(2). Their action on µ is given by (D.39),

while λ stays invariant.

The situation for the singlets is a bit more involved, because some of the deformations

we presented in (D.20) and (D.36) might just refer to gauge transformations which we mod

out. Indeed, exactly the deformations displayed in (D.46) are pure gauge, and therefore,

out of the eight deformations in (D.20), only those of the form

ñi−
1 =

(

Re K ∧ (ãRe Φ1 + d̃ Im Φ1) + ImK ∧ (b̃ ReΦ1 + c̃ ImΦ1)

Re K ∧ (b̃Re Φ1 + c̃ Im Φ1)− ImK ∧ (ã ReΦ1 + d̃ ImΦ1)

)

= Re(d3u
iK̄ ∧ Φ̄1 + d4u

iK̄ ∧ Φ1)

(D.48)

are physical.34 Thus, in the singlets we have eight physical degrees of freedom, which are

parameterized by (D.36) and (D.48). These together with the degrees of freedom in the

(2,2) representation form exactly one spinor C ∈ ΛoddT ∗
2 Y6 ∧ΛevenT ∗

4 Y6 and represent the

RR-scalars. This spinor C is composed out of the several RR-fields via the formal sum

C = C1 + C3 + C5 ∈ ΛoddT ∗
2 Y6 ∧ ΛevenT ∗

4 Y6 , (D.49)

and is identified with the deformations in (D.37), (D.36) and (D.48) via the decomposition

C = ReK ∧ (ã ReΦ1 + d̃ Im Φ1 + aRe Φ2 + d Im Φ2 − α)

+ Im K ∧ (b̃ ReΦ1 + c̃ Im Φ1 + bRe Φ2 + c Im Φ2 + β)

= Re(d1K̄ ∧ Φ̄2 + d2K̄ ∧ Φ2 + d3K̄ ∧ Φ̄1 + d4K̄ ∧ Φ1 −K ∧ β
(2,2)
C

) ,

(D.50)

where α and β are the real SO(4, 4) spinors that are in the (2,2) representation of SU(2)×
SU(2), and α

(2,2)
C

is a complex SO(4, 4) spinor in the same representation. There is a simple

way to display the RR-fields as E7(7) transformations that is

m̃i− = Re(ui(C − i ∗BC)) . (D.51)

34Note that these transformations deform λ but leave µ invariant.
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If exponentiated, these transformations correspond to shifts in the RR-fields which read

C0 → C0 + C . (D.52)

Note that transformations of the form (D.51) commute with each other up to gauge trans-

formations and elements in the stabilizer of the SU(2)× SU(2) structure.

So far we did not discuss shifts in the complexified dilaton B6 + i e−φ.35 These are the

Sl(2, R)S transformations

m̃i
j =

(

eφ 0

−B6 e−φ

)

, (D.53)

which span Sl(2,R)S

SO(2) ⊂
SO(6,6)

SO(6)×SO(6) .

E SU(2) × SU(2) structures in five dimensions

In this appendix we study the missing case of backgrounds of the form (1.1) with a five-

dimensional Minkowskian space-time (d = 5) times a five-dimensional compact manifold

Y5. As before we focus on the situation where these backgrounds preserve 16 supercharges

which corresponds to N = 2 in five dimensions. More precisely the Lorentz group for these

backgrounds is SO(1, 4) × SO(5). The ten-dimensional spinor representation decomposes

accordingly as36

16→ (4,4) , (E.1)

where the first 4 denotes a spinor of SO(1, 4) while the second one denotes the spinor repre-

sentation of SO(5). Preserving half of the supercharges amounts to choosing backgrounds

which admit one or two globally defined spinors which corresponds to manifolds Y5 with a

reduced structure group SU(2) or SU(2)×SU(2), respectively. We will start with a general

analysis of the spectrum of type II supergravities in such backgrounds. We discuss first

geometrical SU(2) structure backgrounds, which are then generalized by the use of the

pure spinor methods of generalized geometry and its analogues in exceptional generalized

geometry. Note that a similar, independently performed analysis of exceptional generalized

geometry in d = 5 has been presented in [20].

E.1 Field decomposition for d = 5

In this section we want to analyze the massless type II supergravity fields in terms of their

representations under the five-dimensional Lorentz group and the SU(2)× SU(2) structure

group and show analogously to section 2.1 how they assemble in N = 2, d = 5 multiplets,

in the spirit of [13].

Again, we use the light-cone gauge where on-shell the fields form representations of

SO(3) instead of the whole SO(1, 4) Lorentz group. Since we treat the case of SU(2)×SU(2)

structure group, we therefore examine the decomposition of massless type II supergravity

35Here, B6 denotes the dualized B field which is a scalar in four dimensions. Our notation refers to the

democratic formulation and expresses the four-dimensional scalar in terms of the six-form B6 which is dual

to the ten-dimensional B field and fills out all internal directions.
36Note that there are no chiral spinor representations for SO(1, 4) and SO(5).
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fields under the group SO(3)× SU(2)× SU(2). For this, let us recall the decomposition of

the two Majorana-Weyl representations 8s and 8c and the vector representation 8v under

the breaking SO(8)→ SO(3)× SO(5)→ SO(3)× SU(2). We get

8s → 42 → 211

2

⊕ 21

2

,

8c → 42 → 211

2

⊕ 21

2

,

8v → 11 ⊕ 50 → 11 ⊕ 10 ⊕ 220 ,

(E.2)

where the subscript denotes the spin s under the SO(3) Lorentz group, i.e. the representa-

tion has dimension (2s+1). We note that both Majorana-Weyl representations decompose

in the same way under a SU(2) structure for d = 5. Therefore, we expect compactifications

of type IIA and type IIB to give the same low energy effective action in this dimension.

In type IIA the massless fermionic degrees of freedom originate from the (8s,8v) and

(8v ,8c) representation of SO(8)L × SO(8)R, while in type IIB they form the (8s,8v) and

(8v ,8s) representation. However, since 8s and 8c decompose in the same way, we just

investigate the former one. Under the decomposition SO(8)L×SO(8)R → SO(3)×SU(2)L×
SU(2)R they behave as

(8s,8v)→ 2(1,1)3

2

⊕ 4(1,1)1

2

⊕ 4(1,2)1

2

⊕ (2,1)3

2

⊕ 2(2,1)1

2

⊕ 2(2,2)1

2

,

(8v ,8s), (8v ,8c)→ 2(1,1)3

2

⊕ 4(1,1)1

2

⊕ (1,2)3

2

⊕ 2(1,2)1

2

⊕ 4(2,1)1

2

⊕ 2(2,2)1

2

.
(E.3)

We see that half of the gravitinos come in the (1,1) representation while the other half

is in the doublet representations (1,2) and (2,1) of SU(2)L × SU(2)R. The latter ones

again correspond to massive gravitino multiplets that must be projected out to end up

with standard N = 2, d = 5 supergravity. After this projection, the fermionic components

in the (1,1) become part of the gravity multiplet and one vector multiplet, while the (2,2)

components correspond to the fermionic degrees of freedom in the vector multiplets.37

The massless bosonic fields of type II supergravity can be decomposed in the same

way. For the NS-NS-sector we consider the combination EMN = gMN + BMN + φηMN

which forms the (8v,8v) representation. It decomposes as

Eµν : (1,1)2 ⊕ (1,1)0 ⊕ (1,1)1 ,

Eµm : (1,1)1 ⊕ 2(1,2)1 ,

Emµ : (1,1)1 ⊕ 2(2,1)1 ,

Emn : (1,1)0 ⊕ 2(1,2)0 ⊕ 2(2,1)0 ⊕ 4(2,2)0 ,

(E.4)

where in the first line the first component corresponds to the metric, the second one to

the five-dimensional dilaton and the third one to the antisymmetric tensor field. After the

projection we are not only left with the four-dimensional metric and the antisymmetric

two-tensor but also with two vectors of the form Eµm and Emµ and one scalar E
(1,1)
mn

37As we know from section 2.1, the (1,1) representation corresponds to the gravity multiplet in d = 6 (for

type IIA). This decomposes into the gravity multiplet plus one vector multiplet in the (1,1) representation

in d = 5.
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that become part of the gravity multiplet and the vector multiplet which was already

mentioned. The other scalars E
(2,2)
mn sit in a vector multiplet. As in the d = 6 case, they

can be associated with deformations of the SU(2) × SU(2) background.

Finally, we decompose the RR-sector. This corresponds to the decomposition of the

(8s,8c) representation or the (8s,8s), leading here to the same result. We find

(8s,8c), (8s,8s)→4(1,1)1 ⊕ 4(1,1)0 ⊕ 2(1,2)1 ⊕ 2(1,2)0

⊕ 2(2,1)1 ⊕ 2(2,1)0 ⊕ (2,2)1 ⊕ (2,2)0 .
(E.5)

Projecting out all SU(2) × SU(2) doublets leaves us with four vectors and four scalars in

the (1,1) representation and one vector and one scalar in the (2,2) representation.

These fields can be assembled into a gravity multiplet and two vector multiplets. The

gravity multiplet contains the graviton, four gravitini, six vector fields, four Weyl fermions

and a real scalar all in the (1,1) representation. The two vector multiplets are in the (1,1)

and (2,2) representation respectively, and each contains one vector field, four gaugini and

five scalars.

Analogously to section 2.1 we still deal with ten-dimensional fields which have been

reordered in such a way that they form N = 2, d = 5 multiplets. The action corresponding

to these multiplets only allows for manifest SO(1, 4)× SO(5) symmetry and N = 2 super-

symmetry. Then we projected out the SU(2)× SU(2) doublets to achieve an action that is

only N = 2 supersymmetric.

E.2 SU(2) structures on manifolds of dimension 5

For a five-dimensional manifold to admit a globally defined, nowhere vanishing SO(5) spinor

η requires the structure group G to be contained in SU(2) since this is the largest subgroup

that allows for a singlet in the spinor representation of SO(5). This can be seen by the fact

that the spin double cover of SO(5) is Sp(2). To allow for a spinor singlet η, this group

has to be broken to Sp(1) ≡ SU(2). We will assume in the following that η is normalized

to one. Considering the breaking SO(5)→ SU(2), the spinor representation splits like

4 = 2⊕ 1⊕ 1 . (E.6)

Here, η and ηc define the two singlets. From these two singlets, one can globally define

the nowhere vanishing two-forms J and Ω using (2.9). Furthermore, one can define a real

one-form L, given by

Lm = η̄γmη , (E.7)

which defines an almost product structure

Pm
n = 2LmLn − δm

n . (E.8)

It singles out one direction L in TY5 at each point and breaks the structure group to SO(4).

Similarly to the discussion of appendix C, all vectors orthogonal to L are SU(2) doublets.

Therefore, in the N = 2 theory only the prefactor of L can be deformed and P is rigid.

Analogously to the four-dimensional case, one can define two-forms via (2.9) which reduce
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the structure group further to SU(2). For the SU(2) structure part of the geometric moduli

space, the discussion of section 2.2 applies. We computed the geometric moduli space to

be (2.53). Here, the prefactor of L gives one additional degree of freedom. Thus, the

result is

Mgeom
d=5 =

SO(3, n + 3)

SO(3)× SO(n + 3)
× R+ × R+ . (E.9)

E.3 Pure spinors in five dimensions

Now we want to apply the framework of generalized geometry to the case d = 5. However,

one cannot define a valid generalized almost complex structure on the ten-dimensional

bundle TY5⊕T ∗Y5 compatible with the canonical pairing I. This generalizes the fact that

one cannot define an almost complex structure on a manifold of odd dimension. Therefore,

the techniques of generalized geometry seem not to apply for a manifold of dimension five.

However, the language of pure spinors still makes sense, and therefore we can apply it even

in this case.

In five dimensions, an SO(5, 5) spinor is defined to be pure if and only if (see for

example [48])

〈Φ,ΓMΦ〉5 = 0 for all M = 1, . . . , 10 . (E.10)

Furthermore, we define a pure SO(5, 5) spinor to be normalizable if and only if

〈Φ,ΓM Φ̄〉5 6= 0 . (E.11)

For two pure spinors Φ+ and Φ− of opposite chirality, we have to define appropriate com-

patibility conditions. Since we are not able to switch to the language of generalized almost

complex structures, we cannot use the intuition which is usually gained there. However,

in analogy to the case of a manifold of dimension four, we can define the compatibil-

ity conditions

〈Φ+,Φ−〉5 = 〈Φ+, Φ̄−〉5 = 0 (E.12)

and the normalization

〈Φ+,ΓM Φ̄+〉5 IMN 〈Φ−,ΓN Φ̄−〉5 = c , (E.13)

where IMN is the SO(5, 5) metric induced by the natural pairing of tangent and cotangent

space. Here it becomes clear why we chose Φ± to be of opposite chirality. Only for such

pairs, eq. (E.13) can be different from zero. We choose in the following the gauge c = 1.

A pair Φ± with these properties already defines some generalized almost product struc-

ture P via

PM
N =

(

〈Φ+,ΓM Φ̄+〉5〈Φ−,ΓKΦ̄−〉5 + 〈Φ+,ΓKΦ̄+〉5〈Φ−,ΓM Φ̄−〉5
)

IKN − δM
N . (E.14)

Since the pure spinors are globally defined, P is globally defined. It is symmetric with

respect to I and divides TY5⊕T ∗Y5 into some two-dimensional eigenspace with eigenvalue

+1 and an eight-dimensional eigenspace with eigenvalue −1. This splitting is compatible

with I and therefore breaks SO(5, 5) to SO(4, 4) × SO(1, 1). Note that in contrast to the
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case d = 4, where we had to impose the existence of P in addition to the existence of a

pure spinor pair, here it just results from the definition of Φ±.

We can use this splitting to decompose Φ+ and Φ− into the corresponding pure SO(4, 4)

spinors and the SO(1, 1) spinor parts. Projecting out all SU(2) × SU(2) doublets implies

that the SO(4, 4) spinor components must be of even degree. Thus, we find

Φ+ = 1 ∧ Φ1 , Φ− = L ∧Φ2 , (E.15)

where L is the one-form that is in the +1 eigenspace of P. Here, Φ1 and Φ2 are compatible

pure SO(4, 4) spinors of even chirality that define some SU(2) × SU(2) structure, while L

is the one-form that corresponds to the fifth direction. Note that the ratio of volumes of

the SO(4, 4) and the SO(1, 1) direction can be reparameterized by the SO(1, 1) vector

UK = 〈Φ+,ΓKΦ̄+〉5 + 〈Φ−,ΓKΦ̄−〉5 . (E.16)

Now we can again do a Kaluza-Klein truncation to obtain a finite-dimensional moduli

space. By using the same methods as in section 2.4 we can determine the moduli space of

SU(2)×SU(2) structures. On top of (2.51) we get one additional R+ factor parameterized

by UK , corresponding to the length of L. Therefore, the moduli space is

MNS
d=5 =

SO(4, n + 4)

SO(4)× SO(n + 4)
× R+ × R+ . (E.17)

E.4 Exceptional generalized geometry in five dimensions

Analogously to d = 6 we can use the U-duality covariant formalism to include the RR

scalars into the moduli space. The U-duality group in five dimensions is E6(6) with the T-

duality subgroup being SO(5, 5) (for more details on the group E6(6) see [49]). We discuss

now the decomposition of the representations of E6(6) in terms of the maximal subgroup

R+ × SO(5, 5), where the R+ factor refers to shifts in the dilaton φ. The fundamental

representation of E6(6) is of complex dimension 27 and decomposes as

27→ 1+4 + 10−2 + 16+1 . (E.18)

E6(6) has also an anti-fundamental representation which decomposes analogously as

2̄7→ 1−4 + 10+2 + 1̄6−1 . (E.19)

The adjoint of E6(6) decomposes as

78→ 10 + 16−3 + 1̄6+3 + 450 . (E.20)

To find the geometric realizations of these representations, we consider the charges in

d = 5, which form the fundamental representation of E6(6), analogously to section 3.5. One

finds [18, 43]

27IIA → (R)+4 + (TY5 ⊕ T ∗Y5)−2 + (ΛevenT ∗Y5)+1 (E.21)

for type IIA, and

27IIB → (R)+4 + (TY5 ⊕ T ∗Y5)−2 + (ΛoddT ∗Y5)+1 (E.22)
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for type IIB. From (E.21) we can derive the geometrical realization of the adjoint given

in (E.20) for type IIA, which is

eIIA
6(6) = (R)0 ⊕ (ΛoddT ∗Y5)−3 ⊕ (ΛevenT ∗Y5)+3 ⊕ (so(TY5 ⊕ T ∗Y5))0 . (E.23)

For type IIB, only the charges of the dilaton are inverted. Therefore, we expect that both

theories have the same moduli space.38 In (E.23) the spinor representations of SO(5, 5)

correspond to the additional generators of the group E6(6).

Following (E.21), we decompose an element λ in the fundamental representation of

E6(6) into its components

λ = (λ0, λ
A, λ+) , A = 1, . . . , 10, (E.24)

and similarly elements ρ in the anti-fundamental representation

ρ = (ρ0, ρ
A, ρ−) . (E.25)

In the same way, we can write an element M in the adjoint representation as

M = (m0,m
+,m−,mA

B) . (E.26)

The action of the adjoint representation on the fundamental is given by

M · λ =(4m0λ0 + 〈m−, λ+〉5,mA
BλB − 2m0λ

A + 〈m+,ΓAλ+〉5,
mABΓABλ+ + λAIABΓBm− + m0λ

+ + λ0m
+) . (E.27)

The product of two 27s contains a 2̄7 which is related to the existence of the cubic invariant

of E6(6). More precisely, we have 27×27→ 2̄7⊕ . . . which by projection leads to the map

27× 27 −→ 2̄7 ,

(λ, λ′) 7−→ λ× λ′ ,
(E.28)

where

λ×λ′ = (λAIABλ′B , λ0λ
′A+λ′

0λ
A+〈λ+,ΓAλ′+〉5, λAIABΓBλ′++λ′AIABΓBλ+) . (E.29)

The scalar product

27× 2̄7 −→1 ,

(λ, ρ) 7−→λ · ρ ,
(E.30)

is defined as

λ · ρ = λ0ρ0 + λAIABρB + 〈λ+, ρ−〉5 . (E.31)

38 Actually, we just have to interchange ΛoddT ∗Y5 and ΛevenT ∗Y5 everywhere to get the result for type

IIB. In terms of the pure spinors in (E.15), we have to apply the operator τL ≡ ιL + L∧ ∈ TY5 ⊕ T ∗Y5

which changes the chirality of Φ+ and Φ−. This symmetry is just the generalization of T-duality. Up to

the gauging that interchanges Φ1 and Φ2 in (E.15), this just corresponds to the exchange of the two pure

spinors Φ+ and Φ−, which is mirror symmetry.

– 62 –



J
H
E
P
0
7
(
2
0
0
9
)
0
8
0

Next we embed the pair of compatible pure SO(5, 5) spinors Φ+ and Φ− into E6(6)

representations. It seems most natural to embed them into the complexified fundamental

and anti-fundamental representation, respectively. Therefore, we define

λ = (0, 0,Φ+) , ρ = (0, 0,Φ−) . (E.32)

Then the purity condition (E.10) is easily rephrased in

λ× λ = 0 , ρ× ρ = 0 , (E.33)

and we can impose the compatibility conditions (E.12) in the form

λ · ρ = λ̄ · ρ = 0 . (E.34)

The normalization condition (E.13) reads

(λ× λ̄) · (ρ× ρ̄) = 1 . (E.35)

Note that λ and ρ define some isomorphism between the 27 and the 2̄7 representa-

tion, via
I 27 −→2̄7 ,

λ̃ 7−→(ρ× ρ̄)× λ̃ ,
(E.36)

and
I−1 2̄7 −→27 ,

ρ̃ 7−→(λ× λ̄)× ρ̃ ,
(E.37)

where I−1 is the inverse of I due to (E.35).

However, so far we did not embed the dilaton degree of freedom into some E6(6) repre-

sentation. Analogously to (2.63), we can embed some SO(1, 1) vector into the fundamental

representation of E6(6) which reflects the dilaton degree of freedom. First of all, one can

either embed this doublet into the fundamental or into the anti-fundamental. However,

both are related by the isomorphism (E.36). Therefore, it does not make any difference

whether we use the fundamental or the anti-fundamental representation. The canonical

SO(1, 1) doublet should correspond to the two singlets in (E.18) and (E.19) because these

do not transform under any geometric structure group and are of opposite charge. These

two singlets are not part of the same representation, but we can use (E.37) to map one

of the singlets into the other representation. Therefore, the embedded SO(1, 1) doublet is

spanned by the two elements in the 27 that are

µ1 = (1, 0, 0)27 , (E.38)

and

µ2 = (λ× λ̄)× (1, 0, 0)2̄7 . (E.39)

The embedding of the dilaton into the fundamental representation of E6(6) then reads

φ 7−→ µ(φ) = eφµ1 + e−φµ2 . (E.40)
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We choose the normalization

µ× µ =
1

2
λ× λ̄ . (E.41)

We can always switch between µ and its ‘cousin’ µ̂ in the anti-fundamental by

µ̂ = (ρ× ρ̄)× µ , (E.42)

µ = (λ× λ̄)× µ̂ . (E.43)

Equation (E.41) together with (E.35) then just states that

µ · µ̂ = 1 . (E.44)

Finally, we impose the conditions

µ× λ = µ× λ̄ = 0 (E.45)

and

µ̂× ρ = µ̂× ρ̄ = 0 (E.46)

to make µ compatible with λ and ρ.

Now we want to discuss the effect of the projection to N = 2 which eliminates all

SU(2)× SU(2) doublets. We have seen in section E.3 that this fixes the generalized almost

product structure P, defined in (E.14), and therefore reduces the T-duality group SO(5, 5)

to SO(4, 4)×R+. Furthermore we know that modding out SU(2)×SU(2) doublets eliminates

half of the degrees of freedom in ΛoddT ∗Y5 and ΛevenT ∗Y5, while for SO(5, 5) vectors, only

the components in the +1 eigenspace of P survive the projection. We decompose (E.20)

further so that the adjoint in terms of SO(4, 4) × R+ × R+ representations reads

78→ 10,0 + 8f
−3,+1 + 8c

−3,−1 + 8f
+3,−1 + 8c

+3,+1 + 10,0 + 8v
0,+2 + 8v

0,−2 + 280,0 . (E.47)

Here, we project out the representations 8v and 8c because they consist of SU(2)× SU(2)

doublets. Using the splitting of the adjoint of SO(5, 5) into SO(4, 4) representations, i.e.

45→ 280 + 8+2 + 8−2 + 10 , (E.48)

we identify the surviving pieces of (E.47) with the Lie algebra of SO(5, 5) × R+. Here the

extra R+ factor is a combination of the volume of the fifth direction and the dilaton degree

of freedom. More precisely, to match the representations, we have to transform the charges

under the two Abelian R+ factors as

(p, q)→
(p− q

2
,−p + 3q

2

)

. (E.49)

Next we consider the decomposition of the fundamental representation of E6(6) in terms

of SO(4, 4) × R+ × R+ representations

27→ 1+4,0 + 8v
−2,0 + 1−2,+2 + 1−2,−2 + 8f

+1,+1 + 8c
+1,−1 . (E.50)
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Again, the representations 8v and 8c are projected out because they consist of SU(2)×SU(2)

doublets. The surviving pieces form an SO(5, 5) × R+ vector

10−2 → 8f
0,−2 + 1+2,−2 + 1−2,−2 (E.51)

and a singlet 1+4. The same holds for the anti-fundamental representation, with the only

difference that the Abelian charges have the opposite sign. The two singlets are spanned

by m0 = (λ̄ × λ) and n0 = (ρ̄ × ρ), and both (E.29) and (E.31) become the usual scalar

product between SO(5, 5) vectors. λ, ρ and µ are projected to vector representations of

SO(5, 5), and (Re λ), (Im λ), (n0 Re ρ), (n0 Im ρ) and µ form a set of five orthonormal

space-like SO(5, 5) vectors. Therefore, they span the coset SO(5, 5)/SO(5). From now on

everything works analogously to section 2.5. After modding out the symmetry between

these five vectors, we end up with

Mλ,ρ,µ =
SO(5, 5)

SO(5) × SO(5)
× R+ , (E.52)

where the R+ factor is due to m0 and n0, which form an SO(1, 1) doublet parameterizing

this degree of freedom. Using again the general argument that we presented in section 2.4,

one can argue that after Kaluza-Klein truncation the actual moduli space is of the form

Md=5 =
SO(5, n + 5)

SO(5)× SO(n + 5)
× R+ . (E.53)

The action of the RR fields can be determined analogously to section 2.5, with the same

result as (2.66).

As we already discussed above, after the projection to a theory with 16 supercharges

the real and imaginary parts of λ and ρ, which were introduced in (E.32), and µ(φ)

given in (E.40) form a set of five space-like, linearly independent vectors in R
(5,n+5).

As long as we do not constrain these objects by purity or compatibility conditions, they

parameterize the flat cone over (E.53) which is the moduli space of the corresponding

superconformal supergravity. Imposing the purity and compatibility conditions given

in (E.33), (E.34), (E.35), (E.41), (E.45) and (E.46) and the removal of gauge degrees of

freedom reduce this to the moduli space (E.53).
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